Solution QuESTION [1日]

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow \pi / 2}\left[\frac{\left(x^{2}-\pi / 4\right) \sin (\cos x)}{x-\pi / 2}\right] \\
& =\left[\frac{\left(\binom{\pi}{2}^{2}-\frac{\pi}{4}\right) \sin (\cos \pi / 2)}{\pi / 2-\pi / 2}\right] \\
& =\left[\frac{\left((\pi / 2)^{2}-\pi / 4\right) \sin (\cos \pi / 2)}{\pi / 2-\pi / 2}\right]=\frac{\left(\frac{\pi^{2}}{4}-\frac{\pi}{4}\right) \sin (\cos \pi / 2)}{0}
\end{aligned}
$$

ie indetermizant.
\therefore using l'Hopita's Law, dyy or the numerator- $=\frac{d y}{d x}+V \frac{d y}{d x}$

$$
\begin{aligned}
& d y=\operatorname{let} u=x^{2}-\pi / 4 \\
& d x \\
& \text { and } V=\sin (\cos x) \\
& \frac{d y}{d x}=2 x \quad d y=? \\
& d x \sin (\cos x)=6 t \cos x=\omega \\
& d x
\end{aligned}
$$

$$
\begin{aligned}
& v=\sin \omega, \therefore \frac{d \omega}{d x}=-\sin x \\
& \frac{d v}{d \omega}=\cos \omega,-\sin x \cos (\cos x) \\
& \frac{d v}{d x}=\frac{d v}{d \omega} \frac{d \omega}{d x}=\left(x^{2}-\pi / 4\right) x-\sin x \cos (\cos x)+\sin (\cos x)(2 x)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{\pi}{2}\right)^{2}-\frac{\pi}{4} \times-\sin 90 \cos (\cos 90)+\sin \left(0 \cos 90 \times 2\left(\frac{\pi}{2}\right)\right. \\
& =\left(\frac{\pi^{2}}{4}-\frac{\pi}{4}\right) \times-1+0 \times \pi \\
& =-\frac{\pi^{2}}{4}+\frac{\pi}{4} ;=\frac{\pi}{4}-\frac{\pi^{2}}{4}
\end{aligned}
$$

\therefore -

$$
\lim \left[\begin{array}{c}
\left(x^{2}-\pi / 4\right) \sin (\cos x) \\
x-\pi / 2
\end{array}\right]=\frac{\pi(1-\pi)}{4}
$$

Question ib

$$
\text { 1b] } \begin{aligned}
& \lim _{x \rightarrow \pi / 2} \ln \left[\exp \frac{\left(3 x^{2}+2 x-1\right)}{x+1}\right] \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \ln \left(\exp \left[\frac{(3 x-1)(x+1)}{x+1}\right]\right) \\
= & \lim \ln (\exp (3 x-1)) \\
& x \rightarrow \pi / 2 \\
= & \lim _{3}(3 x-1)=3\left(\frac{\pi}{2}\right)-1 \\
& x \frac{\pi}{2}(3 x-1 \\
= & \frac{3 \pi}{2}-1=\frac{3 \pi}{2}-1
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow \pi / 2} \ln \left[\exp \frac{\left(3 x^{2}+2 x-1\right)}{x+1}\right]=\frac{3 \pi-2}{2}
$$

QUESTION IC
1C)

$$
\begin{aligned}
& \lim _{x \rightarrow 2+\sqrt{3}} \cos \left(\frac{\sin ^{-1}(x-2)}{(x-\sqrt{3}}\right) \\
& =\lim _{x \rightarrow 2+\sqrt{3}} \cos \left[\sin ^{-1}(2+\sqrt{3}-2)\right. \\
& =\cos \left[\sin ^{-1}\left[\frac{\sqrt{3}}{2}\right]\right] \\
& =\cos \left[\sin ^{-1}(0.8660)\right] \\
& \Rightarrow \cos 60^{\circ} \\
& =1 / \\
& 2
\end{aligned}
$$

b) $\lim _{x \rightarrow 4}\left[\frac{x^{2}-8 x+16}{x^{2}-5 x+4}\right]$

$$
\begin{aligned}
& \Rightarrow \quad \lim _{x \rightarrow 4}\left[\begin{array}{l}
(x-4)(x-4) \\
(x-4)(x-1)
\end{array}\right] \\
& =\lim _{x \rightarrow 4}\left[\frac{x-4}{x-1}\right] \\
& =\frac{4-4}{4-1}=0,3=0
\end{aligned}
$$

QUESTION 2 A

$$
u_{1}=2
$$

$$
(n+1)(n+2)
$$

$$
u_{n}+1=2
$$

$$
(n+2)(n+3)
$$

ratio: $\frac{(1 n+1}{\text { un }}=\frac{2}{(n+2)(n+3)} \times \frac{(n+1)(n+2)}{2}$

$$
\frac{-n+1}{n n}=\frac{n+1}{n+3}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{u_{n}+1}{u n}=\lim _{n \rightarrow \infty} \frac{n+1}{n+3} \\
& =\frac{n+1}{\frac{n}{n}+\frac{n}{n}}=\frac{1+1 / n}{1+3 / n}=\frac{1+0}{1+0}=1 / 1=1
\end{aligned}
$$

Since tim un +1

$$
n \rightarrow \infty \quad u_{n}
$$

\therefore The series is inconclusive

QuESTION 2 B
using the Comparisontest

$$
\begin{aligned}
& \text { recall; }\left[\frac{1}{1^{r}}+\frac{1}{2^{r}}+\frac{1}{3^{r}}+\frac{1}{4^{r}}+\cdots \cdot \frac{1}{n^{r}}\right]=\sum_{n-1}^{\infty} \frac{1}{n^{p}} \\
& \Rightarrow\left[\frac{2}{1^{2}}+\frac{2}{2^{2}}+\frac{2}{3^{2}}+\frac{2}{4^{2}}+\cdots \frac{2}{n^{2}}\right]=\sum_{n=1}^{\infty} \frac{2}{n^{2}} \\
& \quad P=2
\end{aligned}
$$

Since $P>1$, the series converge

Question 3

$$
\begin{aligned}
& u_{n}=\frac{x^{n}}{(2 n+1)^{3}}, \quad u_{n+1}=\frac{x^{n+1}}{(2 n+2)^{3}} \\
& \lim \frac{\left(l_{n+1}\right.}{u_{n}}=\frac{x^{n+1}}{(2 n+2)^{3}} \times \frac{(2 n+1)^{3}}{x^{n}} \\
& \frac{x(2 n+1)^{3}}{(2 n+2)^{3}}=\frac{8 n^{3}+12 n^{2}+n+1}{8 n^{3}+24 n^{2}+24 n+8}
\end{aligned}
$$

divide by Π^{3}

$$
\Rightarrow \frac{\left(8+2 / \pi+\pi^{2}+1 / \pi^{3}\right)}{\left(8+1 / \pi+24 / \pi^{2}+8 / n^{3}\right)}
$$

as $n \rightarrow \infty$

$$
1 / n \rightarrow 0
$$

$$
\begin{gathered}
\frac{8 x}{8} \geqslant x-1 \\
x<1
\end{gathered}
$$

$$
\text { Question } 4
$$

$$
\lim _{x \rightarrow 0}\left[\frac{\sin x-\cos x}{x^{3}}\right]
$$

by using L'Hopital's rule

$$
\begin{aligned}
& y=\left[\frac{\sin x-\cos x}{x^{3}}\right] \\
& \frac{d y}{d x}=\left[\frac{\cos x+\sin x}{3 x^{2}}\right] \\
& \frac{p^{2} y}{d x^{2}}=\frac{-\sin x+\cos x}{6 x} \\
& \frac{d^{2} y}{d x^{3}}=\frac{-\cos x-\sin x}{6} \\
& \lim _{x \rightarrow 0}=\frac{-\cos 0-\cos 0}{6}=\frac{-1-0}{6}=\frac{-1}{6} \\
& \lim _{x \rightarrow 0}\left[\frac{\sin x-\cos x}{x^{3}}\right]=-1
\end{aligned}
$$

