ENG 381 Assignment I
Solve the fallowing
1)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}-d y d x-2 y=8 \\
& \frac{d y}{d x^{2}}-4 y=10 e^{2 x} \\
& d^{2} y y+x^{2}+2 d y d x+y=e^{-2 x} \\
& d^{2} y d d x^{2}+25 y=5 x^{2}+x \\
& d^{2} y d x^{2}-2 d y d x+y=\$ \sin x
\end{aligned}
$$

$d^{2} y / d x^{2}+4 d y / d x+5 y=2 e^{-2 x}$, given that at $x=0, y=1$ and $d y / d x=$
7)

$$
\begin{aligned}
& 3 d^{2} / / x^{2}-2 d y / d x-y=2 x-5 \\
& d^{2} y / d x^{2}-6 d y / d x+8 y=8 e^{4 x}
\end{aligned}
$$

Solution

1) $d^{2} y d x^{2}-d y / d x-2 y=8$

Axillary equation: $m^{2}-m-2$

$$
G S=C F+P I
$$

$C F:$ Solve $\angle H S=0$

$$
\therefore m^{2}-m-2=0
$$

$$
\begin{aligned}
& \therefore\left(m^{2}-2 m+m-2\right)=0 \\
& \quad m(m-2)+1(m-2) \therefore m=2 \text { or }-1
\end{aligned}
$$

PI:- $f(x)=8$. Assume $y=C$

$$
\therefore d y / d x=0 ; d^{2} y / d x^{2}=0
$$

Substituting $d y / d x$ and $d^{2} y / d x^{2}$ in the given equation

$$
\begin{gathered}
0-0-2 C=8 \\
\frac{-2 C}{-2}=\frac{8}{-2} \\
C=-4 \\
P I=-4 \\
G S=C F+P I \\
\therefore y=A e^{-x}+B e^{2 x}-4
\end{gathered}
$$

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-4 y=10 e^{3 x} \\
G S=C F+P I
\end{gathered}
$$

$C F:$ Solve LHS \therefore Axillary equation $m^{2}-4=0$

$$
\begin{aligned}
& m^{2}=4 \quad \therefore \quad m= \pm 2 \\
& \therefore y=A \cosh 2 x+B \sinh 2 x
\end{aligned}
$$

PI: $f(x)=10 e^{3 x} \quad$ Assume $y=C e^{3 x}$

$$
d y / d x=3 C e^{3 x} ; \quad d^{2} y / d x^{2}=9 C e^{3 x}
$$

Substitute $d^{2} y / d x^{2}$ and y in the given equation

$$
\begin{gathered}
9 C e^{3 x}-4\left(C e^{3 x}\right)=10 e^{3 x} \\
9 C e^{3 x}-4\left(e^{3 x}=10 e^{3 x}\right. \\
5 C e^{3 x}=10 e^{3 x} \\
5 C=10 \\
C=2 \\
G S=C F+P I \\
y=A \cosh 2 x+B \sinh 2 x+2 e^{3 x}
\end{gathered}
$$

$$
d^{2} y / d x^{2}+2 d y / d x+y=e^{-2 x}
$$

$$
G S=G+P I
$$

$C F=$ Solve LHS=0:. Auxillary equation $m^{2}+2 m+1=0$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 q}=\frac{-2 \pm 4-(4 \times 1 \times 1)}{2 \times 1}=\frac{-2 \pm 0}{2}
$$

$$
\begin{gathered}
m=-1 \text { twice } \\
y=e^{-x}(A+B x)
\end{gathered}
$$

$$
\begin{aligned}
& \text { PI } \Rightarrow f(x)=e^{-2 x} \quad \therefore \text { Assume } y=C e^{-2 x} \\
& d y d x=-2 C e^{-2 x} \quad d^{2} y d r^{2}=\int\left(e^{-2 x}\right.
\end{aligned}
$$

$$
d y / d x=-2 c e^{-2 x} ; d^{2} y d x^{2}=d\left(e^{-2 x}\right.
$$

Substitute the valise of $d^{2} y / d x^{2}$ and $d y d x$

$$
\begin{gathered}
4 C e^{-2 x}+2\left(-2 C e^{-2 x}\right)+C e^{-2 x}=e^{-2 x} \\
4 C e^{-2 x}-4 C e^{-2 x}+C e^{-2 x}=e^{-2 x} \\
C e^{-2 x}=e^{-2 x} \\
C=1 \quad \therefore y=e^{-2 x} \\
C S=C F+P I \\
y=e^{-x}(A+B x)+e^{-2 x}
\end{gathered}
$$

4)

$$
\begin{gathered}
d^{2} y / d x^{2}+25 y=5 x^{2}+x \\
G S=C F+P I
\end{gathered}
$$

$C F \Rightarrow$ solve $L+S=0 \therefore$ Auxillary equation $m^{2}+25=0$

$$
m^{2}=-25 \quad \therefore m= \pm j 5
$$

PI: $f(x)=5 x^{2}+x \cos 5 x+B \sin 5 x$

$$
\text { PI: } \begin{aligned}
f(x)= & 5 x^{2}+x \\
\frac{d y}{d x}= & 2 C x+D \\
& \frac{d^{2} y}{d x^{2}}=2 C
\end{aligned}
$$

Substituted $d x^{2} y / d x^{2}$ and y in the equation

$$
\begin{aligned}
& 2 C+25\left(C x^{2}+D x+E\right)=5 x^{2}+x \\
& 2 C+25 C x^{2}+25 D x+25 E=5 x^{2}+x \\
& x^{2}: 25 C=5
\end{aligned}
$$

$$
c=1 / 5
$$

$$
x: \quad 250=1
$$

$$
D=1 / 25
$$

$x^{0}: \quad 2(425 t=0$

$$
2\left(\frac{1}{5}\right)+25 t=0
$$

$$
25 t=-2 / 5
$$

$$
\epsilon=-2 / 125 .
$$

$$
\begin{aligned}
\therefore y & =\left(1 / 5 \times x^{2}\right)+(1 / 25 \times x)+(-2 / 125) \\
y & =x^{2} / 5+x / 5-2 / 125
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{x^{2} / 5+x / 25-2 / 125}{5} \\
& 25 x^{2}+5 x-2
\end{aligned}
$$

$$
y=\frac{25 x^{2}+5 x-2}{125}
$$

$$
\begin{aligned}
& G S=(F+P I \quad 125 \\
& G S=A \cos 5 x+B \sin 5 x+\frac{25 x^{2}+5 x-2}{125}
\end{aligned}
$$

5) $d^{2} y / d x^{2}-2 d y / d x+y=4 \sin x$
$C F \Rightarrow$ solve $\left(H S=0 \quad \therefore\right.$ Auxiliary equation $m^{2}-2 m+1=0$

$$
\begin{aligned}
& m^{2}-m-m+1=0 \Rightarrow m(m-1)-1(m-1)=0 \\
& m=-1 \text { trice } y=e^{-x}(A+B x) \\
& \text { PI } \Rightarrow f(x)=d \sin x \quad \text { Assume } y=(\cos x+0 S
\end{aligned}
$$

$$
P I \Rightarrow f(x)=d \sin x \quad \therefore \text { Assume } y=(\cos x+D \sin x
$$

$$
\begin{aligned}
& d y / d x=-C \sin x+D \cos x \\
& d^{2} y / d x^{2}=-C \cos x-D \sin x
\end{aligned}
$$

Substitute into the general equation

$$
\begin{aligned}
& -C \cos x-D \sin x-2(-C \sin x+D \cos x)+C \cos x+D \sin x=4 \sin x \\
& -C \cos x-D \sin x+2 C \sin x-2 D \cos x+C \cos x+D \sin x=4 \sin x \\
& (-D+2 C+D) \sin x+(-C-2 D+C) \cos x=4 \sin x \\
& \sin x:-D+2 C+D=4 \\
& \frac{2 C}{2}=\frac{4}{2} \quad \therefore C=2
\end{aligned}
$$

$$
\begin{gathered}
\cos x: \quad-C-2 D+C=0 \\
-2-2 D+2=0 \\
-2 D=0 \\
D=0 \\
y=2 \cos x+0 \sin x \\
y=2 \cos x \\
G S=C F+P I \quad \therefore G S=e^{-x}(A)
\end{gathered}
$$

6)

$$
\begin{aligned}
& d^{2} y / d x^{2}+4^{d y} d x+5 y=2 e^{-2 x} \\
& a\left(F \Rightarrow \text { tue } \left(H S=0 \quad m^{2}+a m+5=0\right.\right. \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{4^{2}-(4 \times 1 \times 5)}}{2 \times 1} \\
& =\frac{-4 \pm \sqrt{-4}}{2}=\frac{-4 \pm 2 j}{2}=-2 \pm j \\
& y=e^{-2 x}(A \cos x+B \sin x) \\
& P I \Rightarrow f(x)=2 e^{-2 x} \quad \therefore \quad y=C e^{-2 x} \\
& \frac{d y}{d x}=-2 c e^{-2 x} ; \quad \frac{d^{2} y}{d x^{2}}=\$ c e^{-2 x} \\
& \text { substitute in the equation } \\
& 4\left(e^{-2 x}+4\left(-2 c e^{-2 x}\right)+5\left(\left(e^{-2 x}\right)=2 e^{-2 x}\right.\right. \\
& 4 c e^{-2 x}-8 c e^{-2 x}+5 c e^{-2 x}=2 e^{-2 x} \\
& e^{-2 x}: \quad 4 c-8 c+5 c=2 \\
& c=2 \\
& y=2 e^{-2 x} \\
& 0_{0}=2 x(A \cos x+B \sin x)+2 e^{-2 x}
\end{aligned}
$$

Question 6 Continuation:

$$
\begin{aligned}
& x=0 ; y=1 \\
& 1=A+2 \\
& A=-1 \\
& y=e^{-2 x}(-\cos x+B \sin x)+2 e^{-2 x} \\
& \frac{d y}{d x}=e^{-2 x}(\sin x+B \cos x)-2 e^{-2 x}(-\cos x+B \sin x)-d e^{-2 x} \\
& \\
& -2=B+2 \text { and } d y / d x=-2
\end{aligned}
$$

Particular solution is $y=e^{-2 x}(-\cos x)+2 e^{-2 x}$

$$
\begin{gathered}
y=-e^{-2 x} \cos x+2 e^{-2 x} \\
y=e^{-2 x}(2-\cos x)
\end{gathered}
$$

7)

$$
\begin{aligned}
& 3 d^{2} y / d x^{2}-2 d y / d x-y=2 x-3 \\
& C F \Rightarrow L H s=0 \therefore \text { Auxillary equation }=3 m^{2}-2 m-1=0 \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{29} \Rightarrow \frac{2 \pm(-2)^{2}-(4 \times 3 x-1)}{2 \times 1} \\
& =\frac{2 \pm \sqrt{4+12}}{2}=\frac{2 \pm 4}{2} \\
& m=3 \text { or }-1 \\
& \therefore y=A e^{-x}+\text { Be } 3 x \\
& P I \div f(x)=2 x-3 \quad \text { But } y=C x+D \\
& \frac{d y}{d x}=C \quad \frac{d^{2} y}{d x^{2}}=0
\end{aligned}
$$

Substitute into the given equation

$$
\begin{gathered}
3(0)-2(C)-(C x+D)=2 x-3 \\
x:-2 C-(x-D)=2 x-3 \\
-C=2 \\
C=-2 \\
x^{\circ}:-2 C-D=-3 \\
-2(-2)-D=-3 \\
4-D=-3 \\
7=D \\
\therefore y=-2 x+7
\end{gathered}
$$

$$
\begin{gathered}
G S=C f+P I \\
G S=A e^{-x}+B e^{3 x}-2 x+7 \\
d^{2} y / d x^{2}-6 d y / d x+8 y=8 e^{4 x} \\
m^{2}-6 m+8=0 ; \text { (Axillary equation) } \\
(F \Rightarrow(H S=0 \\
m^{2}-4 m-2 m+8=0 \\
m(m-4)-2(m-4)=0 \\
m=4 o r 2 \\
y=A e^{2 x}+B e^{4 x} \\
P I \Rightarrow f(x)=8 e^{4 x} \quad B u t y=C e^{4 x} \\
\frac{d y}{d x}=4 C e^{4 x} ; \quad \frac{d y}{d c^{2}}=16 C e^{4 x}
\end{gathered}
$$

Substitute $\frac{d^{2} y}{d x^{2}}$ into the general equation

$$
\begin{aligned}
& 16 C e^{4 x}-6\left(\$ c e^{4 x}\right)+8\left(\left(e^{4 x}\right)=8 e^{4 x}\right. \\
& 16\left(e^{4 x}-24 C e^{4 x}+8 c e^{4 x}=8 e^{4 x}\right. \\
& e^{4 x}=16 c-24 C+8 c=8
\end{aligned}
$$

