rome: ese reku temiche ofemuro
Orionermber: catsmanh Emenulezpinty
menew No: is fsocserfon3
Uewny tive Relonati Theerom, grave thont
(8) $y=x^{3} s_{4}^{4 x} \quad$ delermane y^{5}

$$
u=e^{4 x} \quad v=x^{3}
$$

Selinturin.

$$
\begin{aligned}
4^{5}=4^{5} e^{4 x} & v^{\prime}=3 x^{2} \\
y^{4}=4^{5-1} e^{4 x}=4^{4} e^{4 x} & v^{4}=6 x \\
4^{3}=4^{5-2} e^{4 x}=4^{3} e^{4 x} & v^{41}=6 \\
4^{2}=4^{5-3} e^{4 x} & =4^{2} e^{4 x} \\
4^{\prime}=4^{5-4} e^{4 x} & =4^{3} e^{4 x} \\
4^{0}=84^{5-5} e^{4 x} & =4^{0} e^{4 x} \\
& =e^{4 x}
\end{aligned}
$$

$$
\begin{aligned}
y^{5} & =\left\{4^{5} e^{4 x} \cdot x^{3}\right\}+\left\{5 \cdot 4^{4} e^{4 x} \cdot 3 x^{2}\right\}+\left\{\frac{5(5-1)}{2!} \cdot 4^{3} e^{4 x} \cdot 6 x\right\} \\
& +\left\{\frac{5(5-1)(5-2)}{3!} \cdot 4^{2} e^{4 x} \cdot 6\right\} \\
y^{3} & =1024 x^{3} e^{4 x}+3840 x^{2} e^{4 x}+3540 x e^{4 x}+760 e^{4 x} \\
& y^{5}=e^{4 x}\left\{1024 x^{3}+3840 x^{2}+3 \times 40 x+960\right\}
\end{aligned}
$$

iy $\frac{x^{2} d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$.
Show that $x^{2} y^{(2 n+2)}+(2 n+1) x y^{(n+1)}+\left(n^{2}+1\right) y^{n}=0$.
sotution

$$
\begin{gathered}
x^{2} y^{2}+x y^{1}+y_{w_{1}}^{0}=0 . \\
w_{2} \\
\omega_{3} \\
\omega_{3}
\end{gathered}
$$

$$
w_{1} \Rightarrow \quad u=y^{2} \quad v=x^{2}
$$

$$
y^{n}=y^{n+2} \quad v^{\prime}=2 x
$$

$$
w_{1}^{n}=y^{(n+2)} \cdot x^{2}+n \cdot y^{(\cos)} \cdot 2 x
$$

$$
4^{n-1}=y^{n+1} \quad v^{4}=2 .
$$

$$
4^{n-2}=y^{n} \quad v^{u}=0
$$

$$
+\frac{n(n-1)}{-2 t} \cdot y^{n}
$$

$$
w_{1}^{n}=x^{2} y^{n+2}+2 x n y^{(n+1)} \ln (n-1) y^{n}
$$

Ateracy Taditofe opempor 16 lyia ol lo23
$w^{2} \Rightarrow$

$$
\begin{array}{ll}
u=y^{\prime} \quad v=x & w_{y}^{2}=y^{n+1}+x+m+y^{\prime}=1 \\
y^{n}-y^{n+1} \quad v^{\prime}=1 & w_{2}^{2}=x y^{n+0}+m y^{n}
\end{array}
$$

$W_{3} \Rightarrow$

$$
w_{3}^{2}=y^{2}=1
$$

$$
y^{n}=y^{n} \quad v^{\prime}=0
$$

$$
w_{3}^{2}=y^{2}
$$

$$
\begin{aligned}
& w_{1}+w_{2}+w_{2}=0 \\
& x^{2} y^{(n+2)}+2 x n y^{(n+1)}+n(n-1) y^{2}+x y^{(n+\infty}+n y^{2}+y^{2}=0 \\
& x^{2} y^{(n+2)}+x y^{(n+1)}(2 n+1)+y^{2}\left(n^{2}-n+n+1\right) \cdot z 0 \\
& x^{2} y^{(n+2)}+(2 n+1) x y^{(n+1)}+\left(n^{2}+1\right) y^{2}=0 .
\end{aligned}
$$

ADveral trantope opemvo दोधित्रlo्य3

$$
\begin{aligned}
& y=e^{x^{2}+x} \\
& y^{\prime}=(2 x+1) e^{x^{2}+x} \\
& y^{\prime \prime}=(2 x+1)(2 x+1) e^{x^{2}+x}+2 e^{x^{2}+x} \\
& y^{\prime \prime}=(2 x+1) y^{\prime}+2 y \\
& y^{\prime \prime}-(2 x+1) y^{\prime}-2 y=0 \\
& \downarrow \quad \downarrow \quad y_{1}^{\prime} \\
& w_{1} \quad w_{2}=y^{2} \quad v=1 \\
& w_{1}=y^{n+2} v^{\prime}=0 \\
& y^{n+2} \\
& w_{1}^{n}=\quad u=y^{\prime} \quad v=-(2 x+1) \\
& 4^{n}=y^{n+1} v^{\prime}=-2 \\
& w_{2} \Rightarrow y^{n-1}=y^{n}=0 \\
& w_{2}^{2}=-(-2 x+1) y^{n+1}+n(-2) y^{2} \\
& w^{2}=y^{0} \quad v=-2 \\
& w_{3} \Rightarrow \quad x^{n}=y^{n} \quad v^{\prime}=0 \\
& w_{3}^{2}=-2 y^{n} \\
& w_{1}+w_{2}+w_{3}=0 \\
& y^{n+2}+\left(-(2 x+1) y^{n+1}-2 n y^{n}-2 y^{n}=20\right. \\
& y^{n+2}=+(-2 x+1) y^{n+1}+2 n y^{n}+2 y^{n} \\
& y^{n+2}=(2 x+1) y^{n+1}+2 y^{n}(n+1)
\end{aligned}
$$

