	NDUBUISI DAVID					
	15/ENG01/008					
	CHEMICAL ENGINE	ERING				
	100					
1.	(1-x2) dy - 2x dy	+24 =0				
	$(1-n^2)y^2 - 2ny' + 2y = 0$					
	$y^{n} = v^{n}v + ny^{(n-1)}v' + n(n-1)y^{(n-2)}y^{2} + \dots$					
	FOR WI	For Wa	For W3			
	4= y2 V=1-x2	14=9 V=-2x	U=29 V=1			
	$u^{n} = y^{n+2} - v' = -2x$	"= yn+1 v' =-2	U"= 24" V' = 0			
	Un-1 = yn+1 V"= -2	Un-1= yn v"= 0	The state of the			
	un= yn* v"=0	18 18				
	yn+2. (1-x2) + ny	1+1) . (-2x) + n(n-	1)yn . (-2) + y(n+1) (-	22)		
		2!				
	$+ny^{n}-(-2)+[2y^{n}]=0$					
	(1-x2) y(n+2) - 2 xny(n+1) - n(n-1)yn - 2xcy(n+1) - 2ny(n) + 2y=0					
	$y^{(n+2)} - n(n-1)y^{(n)} - 2ny^{(n)} + 2y^n = 0$					
	$\frac{y}{y} = \frac{1}{n(n-1)y} = \frac{2}{n} \frac{y}{y} = 0$					
-	$y^{(n+2)} + y^{n} \left[-n(n-1) - 2n + 2 \right] = 0$ $y^{n+2} + y^{n} \left[-n^{2} + n - 2n + 2 \right] = 0$					
	y + y [-n-+n-2n+2J	=0			
	yn+2+ yn[-n-n+2]=0					
	yn+ = - y(n)					
		- 4° 2007 . 2 =				
	n=1 : y(3) = -1	J"[0]				
	$n=2$: $y^{(4)} = -y^{(2)} [-4] = 4y^{(2)} = 4[-2][y^{(0)}] = -8y^{(0)}$					
	n=3: y(5) = -y(3)	[-10] = 10461 =	10.0:0			
	n=4:4(6) = -44)[-18] = 184(4) = 18[-8]4(0)					
	$n=5: y^{(7)} = -y^{(5)} \cdot [-28] = 28 \cdot [y^{(5)}] = 28 \cdot 0 = 0$					
-	U U° 1 1 1 2 12 3 2					
	$y = y^{\circ} + ny' + \frac{n^2}{2!}y^{2} + \frac{n^3}{3!}y^{3} + \cdots$					
-						

$$y = y^{6} + xy^{7} + \frac{x^{2}}{2!}(-2)y^{6} + \frac{x^{3}}{3!}(6) + \frac{x^{4}}{4!}(4)(-2)y^{6} + \frac{x^{5}}{5!}(6)$$

$$+ \frac{x^{6}}{6!}(18)(-8)y^{6} + \frac{x^{7}}{7!}(6)$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{4}}{3x_{1}}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{4}}{3x_{1}}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{4}}{3x_{1}}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - \frac{x^{6}}{5}y^{6}$$

$$y = y^{6} + xy^{7} - x^{2}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - x^{6}y^{6} - x^{6}y^{6} - x^{6}y^{6} - x^{6}y^{6}$$

$$y = y^{6} + xy^{7} - xy^{6} - x^{6}y^{6} - x^{6}y^{6}$$

```
e^{-2t}\cos 5t
L \cdot \cos 5t^2 = S = S
S^2 + a^2 \qquad S^2 + 5^2 \qquad S^2 + 25
iv
       Replacing S by a Shift of e^{-2t}: S+2
L \stackrel{?}{\cdot} e^{-2t} \cos 5t \stackrel{?}{\cdot} = \frac{5+2}{(5+2)^2+25}
        t \sin 3t
L \{ \sin 3t \} = \underline{q} = \underline{3}
S^2 + a^2 \qquad S^2 + 3^2
٧.
                                    F(s) = 3
               S^{2}+9
L \{tsin3t\}^{2} = -f'(s) \quad or \quad -ds \{f(s)\}
f'(s) \quad using \quad quotient \quad rule
u=3 \quad du=0
v=S^{2}+9 \quad dv=2s
v^{2}/4s - u^{3}/4s = [s^{2}+9]-0 - 3 \cdot [2s]
V^{2} \quad [s^{2}+9]^{2}
                          e^{-t} - e^{-2t}y = 1 - 1 = 0 = x indeterminate
      Applying L'Hopital's rule

Lim \int_{-1}^{1} e^{-t} - (-2)e^{-2t} y = \int_{-1}^{1} + 2 y = 1 = 1
                           [ f(t)] = fodo
```

```
fo = L\f(t)\f\ = e^{-t} - e^{-2t} = 1 - 1
          So for Liftly = \int_{\sigma=s}^{\infty} \frac{1}{\sigma+1} d\sigma
\int_{\sigma=s}^{\infty} \frac{1}{\sigma+1} d\sigma - \int_{\sigma=s}^{\infty} \frac{1}{\sigma+2} d\sigma
                 = [in[0+1] - In[s+2]]s
               = \frac{[\ln(\sigma+1)]^{\infty}}{(\sigma+2)} = \frac{1}{[m+2]} \frac{(m+1)}{(m+2)} = \frac{5+1}{5+2}
                       = -\ln \frac{5+1}{5+2} = \ln \frac{5+2}{5+1}
       et cos 2t

Let cos 2t = et Lecos 2ty

- s
Vii
                     L \left\{ \cos 2t \right\} = S = S
5^{2} + 2^{2} \qquad 5^{2} + 4
       replacing 5 by a shift of ett: 5-4
              L le4t coset 3 = 5-4
```

Viii	tSin 2t
	= L [tsin 2t] = -d [f(s)]
	F(s) = L\(\frac{1}{2}\) = 2
	5 ² +2 ²
	f(s) = 2
	S ² +4
	F'(s) using quotient rule u=2 du/ds=0
100	
	V= S2+4 dy/ds = 25
	V dy/ds - 21 dy/ds
	$-(s^2+4)\cdot 0 - 2\cdot (2s)$ $[s^2+4]^2$
	= -45
	$\mathbb{L}^{2}+4\mathbb{J}^{2}$
	L[tsin2t] = -f'(s)
	$= -1 - \left(\frac{-4}{(s^2 + 4)^2} \right) = \frac{4s}{(s^2 + 4)^2}$
	((S+4))
	. 2
ix	$\frac{t^{3}+4t^{2}+5}{1-(t^{3}+4t^{2}+5)^{2}} = 1-(t^{3})^{2}+41-(t^{2})^{2}+1-(t^{2})^{2}$
	$= \frac{3!}{5^{3+1}} + 4\left\{\frac{2!}{5^{2+1}}\right\} + \frac{5}{5}$
	5 6 + 8 + 5 5 4 5 8 S
ni	est(t2+43
70	=> L {t2 + 4 } = L {t2 } + L {4 }
	$\frac{1}{5^{2+1}} + \frac{4}{5}$
	$\frac{3}{5^3} + \frac{4}{5}$

replacing S by 9 shift of S-3

Life
$$i^{1}(t^{2}+4) = 2 + 4$$
 $(S-3)^{2}(S-3)$

Xi

 $t^{2}\cos t$

Lift $i^{2}\cos t$
 $t^{2}\cos t$

Lift $i^{2}\cos t$
 $t^{2}\cos t$
 $t^{2}\cos$

×ii	Sinhat	
	t	
	= L { sinhat }	
3.1	S - 5	
	(S-3)(S-4)	
	$\frac{1}{(s-3)(s-4)} = \frac{A}{(s-3)} + \frac{B}{(s-4)}$	
100	5-5 = A(S*-4) + B(S-3)	
	(s-3)(s-4) $(s-3)(s-4)$	
	Assuming 5-4=0 5=4	
	4-5=A(4-4)+B(4-3)	
-	-1 = B(1)	
	B = -1	
	Assuming 5-3=0 : 5=3	
	43-5 = A(3-4) + B(3-3)	
	-2 = A(-1)	
	A = 1	
	(s-3)(s-4) = 2 + -1 (s-3)(s-4) = (s-3) + (s-4)	
	(s-3)(s-4) $(s-3)$ $(s-4)$	
	2 A 2 - 1	
-	$(s-3) \qquad 5-4$	
-	$2\left\{\frac{1}{S-3}\right\} - \left\{\frac{1}{S-4}\right\}$	
-	$= 2e^{3t} - e^{4t}$	
	- 20 - 6	
1		
111	(25-6) (S-2)(S-4)	
	L-1 \ 28-6 }	
	((s-2)(s-4))	

Scanned by CamScanner

iv.
$$S-5$$

$$S^{2}+4s+20$$

$$L^{-1}\int_{S}^{2}S-5 \qquad C= \\ (S^{2}+4s+20)$$

$$F(s) = S \longrightarrow S \qquad -5$$

$$(S^{2}+2)^{2}+16 \qquad (S^{2}+2)^{2}+16$$

$$= S+2-2-5 \qquad = S+2-2$$

$$(S+2)^{2}+16 \qquad (S+2)^{2}+16 \qquad (S+2)^{2}+16$$

$$= S+2 \qquad -7 \times \frac{4}{4}$$

$$(S+2)^{2}+4^{2} \qquad (S+2)^{2}+4^{2}$$

$$= S+2 \qquad -7 \cdot 4$$

$$(S+2)^{2}+4^{2} \qquad 4 \qquad (S+2)^{2}+4^{2}$$

$$F(t) = e^{-2t}\cos 4t - 7/4 e^{-2t}\sin 4t$$

$$= e^{-2t}\left[\cos 4t - 7/4 \sin 4t\right]$$