NAME: Ejiofor Jessica

MATRIC NO: 17/mhs01/105

DEPARTMENT: MBBS

QUESTION 1

A. Fragment at m/z = 105

N=14amu. 105-14=91

91/12 = 7.5-----C7NH?

7*12 = 84

1*14 = 14

105 - (84+14) = 7

So therefore 7 hydrogen's gives C7NH7

Therefore... (2n +2 -no of hydrogen)/2

[2(7.5)+2-7]/12=5.25

Then add an oxygen atom

C7NH7 -----C6NOH3

[(2(6.5)+2-3)/2]=5.5

B.– Organic compounds are important because they serve as the basic form of all carbon bases for life on earth.

- Create energy production in biological life
- Causes atmospheric depletion and releases hydrocarbon energy

- Organic compounds have versatile bonding patterns and are part of all organisms
- Long carbon chain can be produced
- Will bond with many other elements
- Can form single, double and triple bonds
- A huge number of carbons is produced
- Organic compounds form stable bonds to other carbon atoms- (catenation).

C.

Homocyclic	Heterocyclic	
They are cyclic compounds having atoms of the same element as ring members		
Ring contains atom of the same element	Ring contains atoms of different elements	
Contains atoms of the same element bonded to each other containing a ring		
Examples include: benzene, c y c l o h e x a n e, t o l u e n e, cyclohexanol	1	

QUESTION 2

- a) R.f of the first band = 2.4/12.2 = 0.19 = 0.2.
 - R.f of the second band= 5.6/12.2 = 0.45 = 0.5.
 - R.f of the third band= 8.9/12.2 = 0.729 = 0.73.
- b) _A- belongs to the family of the aldehyde, aromatic aldehyde and alpha hydroxyl ketone functional groups

- B- belongs to the alkene or alkyne family.
- c) Brandy's test 2,4- Dinitrophenylhydrazine can be used to qualitatively detect the carbony functionality of a ketone or aldehyde functional group.

d)

Organic compounds	Functional group	<u>example</u>
1. Alkanes	RH	CH4- methane C2H6- propane
2. Alkenes	RR' C=CR2R3CH3	CH2=CH2- ethylene CH2=CH2- propene
3. Alkynes	RIC≡CR2	HC≡ CH- acetylene CH3 C ≡ CH HC≡ CH- propene
4. Alcohols	ROH	CH3OH- methanol C2H5OH- ethanol
5. Alkyl halides	RX	CHCL3- chloroform C H 2 C L 2 - dichloromethane
6. Aldehyde	RCHO	CH3CHO- ethanal CH2O- methanal
7. Carboxylic acid	RCOOH	CH3COOH- ethanoic acid HCOOH- formic acid