NAME: OWOPE MAYOWA MICHELLE DEPARTMENT: MEDICINE AND SURGERY MATRIC NO: 17/MHS01/279 COURSE CODE: CHM102

ASSIGNMENT

1A. possible formular for a molecular ion (m/z) of 105

Solution

If the mass of the molecular ion is odd, it contains atleast one nitrogen atom N.

N= 14amu

105-41=91

Determine the maximum number of carbon atoms

91/12=7.5 hence 7 carbon atom maximum. C7 HN7

(12 ×7) +(14 ×1) +H= 105

84+14+H=105

98+H=105

H=105-98

H=7

C7H7N is a possible formular

Add an oxygen atom into the formular (-CH4 when adding O)

C7NH7→C6NOH3\

The possible formulars are C7H7N, C6NOH3

1B. Importance of organic compounds

a. Organic compound is important because it involves the study of life and all chemical

reactions related to life.

- b. Organic chemistry uses some diagnosing aids to detect organic part of the deficiency or disturbed substance
- c. Organic compounds are used in making sterilizing agents and disinfectants such as formaldehyde, phenol etc. due to their properties like solubility, PH they can kill microbes'
- d. Allotropes of carbon such as diamond can be used to make durable and valuable jewelries.
- e. Organic compound are in the medical sector to manufacture painkillers, drugs, antibiotics,

1C. <u>Differences between Homocyclic and Heterocyclic compounds</u> anesthetics anti-depressant.

	Homocyclic compounds	Heterocyclic compounds
1.	Cyclic compounds with same element as ring members.	Cyclic compounds with different elements as ring members.
2.	Homocyclic compounds have 100% carbon atoms in their rings.	Heterocyclic compounds have mainly carbons with heteroatoms such as nitrogen, oxygen, sulphur is found in their rings.
3	It contains atoms of the same element bonded to each other to form ring.	It contain atoms of different elements bonded together to form ring.
4	Examples includes; phenol, toluene, naphthalene and anthracene.	Examples include; furan, pyridine, tetrahydrofuran, piperidine, pyrrole.

distance moved by solvent front

Distance moved by solvent font= 12.2cm

Distance moved by substance1= 2.4cm

Rf for band A= $\frac{2.4 \text{ cm}}{12.2 \text{ cm}}$ = 0.197

Distance moved by band B = 5.6cm

Rf for band B = $\frac{5.6 \text{ cm}}{12.2 \text{ cm}}$ = 0.459

Rf moved by band C= $\frac{8.9 \text{ cm}}{12.2 \text{ cm}}$ = 0.730

2b. since A was positive to Tollens test then A is an <u>Aldehyde</u> and since B decolourise bromine water it is an <u>alkene</u>.

2C. 2,4-dinitrophenylhydrazine test is employed for Ketones and Aldehydes.

2D Functional groups and their examples

1.	Alkane	Methane, propane
÷		
2.	Alcohol	Ethanol, Propanol
3.	Alkanal	Propanal, butanal
4	Alkyne	Propyne, pentayne
5	Amine	Propyl_amine,_dimethyl_amine
6	Alkene	Butane, propene
7	Ether	Methyl ethyl ether, diethyl ether