ENGINEERING MATHEMATICS ASSIGNMENT I

PROBLEM AND SOLUTION

The dynamic model of a body in motion performing damped forced vibrations is as in Equation (1),

 $d^{2}x/dt^{2} + 5dx/dt + 6x = cost$ (1)

Given that when t=0, x=0.1 and dx/dt = 0,

1) Using the Auxiliary Equation Method, obtain the solution of the model in the form of an expression having x as a function of t.

SOLUTION

For the complementary function (CF),

 $d^{2}x/dt^{2} + 5dx/dt + 6x = cost$ (1)

Assume

f(t) = 0(i)

 $x = Ae^{kt}$(ii) $dx/dt = kAe^{kt} = kx$(iii)

 $d^{2}x/dt^{2} = k^{2}Ae^{kt} = k^{2}x$ (iv)

By substituting equations (i), (ii), (iii) and (iv) into equation (1), equation (1) becomes:

$$k^{2}x + 5kx + 6x = 0$$

$$x(k^{2} + 5k + 6) = 0$$

$$x = 0 \text{ and}$$

$$k^{2} + 5k + 6 = 0 \dots \text{Auxiliary Equation}$$

Using factorization method,

$$k^{2} + 2k + 3k + 6 = 0$$

k(k+2) + 3(k+2) = 0

(k+2)(k+3) = 0

K = -2 or -3

Hence;

 $K_1 = -2$ and $K_2 = -3$

Thus, the complementary function of equation (1) becomes:

 $x = Ae^{-2t} + Be^{-3t}$ (2)

+For the particular integral (PI),

Assume

 $\begin{aligned} x &= Csint + Dcost \dots (I) \\ dx/dt &= Ccost - Dsint \dots (II) \\ d^2x/dt^2 &= -Csint - Dcost = - (Csint + Dcost) \dots (III) \\ By substituting equations (I), (II) and (III) into equation (1), equation (1) becomes: \end{aligned}$

-Csint - Dcost + 5(Ccost - Dsint) + 6(Csint + Dcost) = cost

(-D+5C+6D)cost + (-C-5D+6C)sint = cost

By comparing coefficients;

cost: 5C + 5D = 1(IV)

sint: 5C - 5D = 0(V)

Equation (IV) + equation (V)

10 C = 1, C = 1

Put C = 1/10 into equation (IV),

5(1/10) + 5D = 1;

$$5D = 1 - (1/2) = 1/2$$

$$D = (1/2) X (1/5) = 1/10$$

Putting the values of C and D into equation (I), equation (I) which is the (PI) becomes:

x = (1/10)sint + (1/10)costx = (1/10) (sint +cost)(3)

Hence:

The complete solution of the equation using the auxiliary equation method is:

 $x = Ae^{-2t} + Be^{-3t} + (1/10) \text{ (sint +cost)} \dots (4)$

By putting x = 0.1 and t = 0 into equation (4), equation (3) becomes:

 $0.1 = Ae^{-2(0)} + Be^{-3(0)} + (1/10) (sin(0) + cos(0))$ 0.1 = A + B + 1/10 A + B = 1/10 - 1/10 = 0;A + B = 0, A = -B

Also, by differentiating x:

INAIBO E. ISAIAH/16/ENG04/026 ENG 381 $dx/dt = -2Ae^{-2t} - 3Be^{-3t} + (1/10) (cost - sint)$ Putting dx/dt = 0, t = 0 and A = -B $0 = -2(-B)e^{-2(0)} - 3Be^{-3(0)} + (1/10) (cos(0) - sin(0))$ 0 = 2B - 3B + 1/10 B = 1/10A = -B = - (1/10)

Hence the complete particular solution becomes:

- $x = (1/10)(-e^{-2t} + e^{-3t}) + (1/10) \text{ (sint +cost)}$ $x = (1/10)(-e^{-2t} + e^{-3t} + \text{sint +cost})$
 - 2) Write a MATLAB program to plot the relationship between x and t for 0 <= t<= 15 unit using a step size of 0.01 unit.

Solution			
📣 MATLAB R2017a			
НОМЕ	PLOTS	APPS	EDITOR PUBLISH VIEW
New Open Save	Find Files	Go To	 Indent F → F → Advance Run Run and Advance Run Advance Run and Advance Time
🔶 🔶 🔁 🔁 📘	► C: ► Users ►	BROOKSTO	DNE SCHOOL > Documents > MATLAB
Current Folder			Z Editor - C:\Users\BROOKSTONE SCHOOL\Documents\MATLAB\Question1.m
Name A ASSIGNMENT.r EEE235Graph.n EX1.m EX2.mat EX2.mat EX3.m EX3Isaiahassign EX4Johnson.m EX4Johnson.m EX5.m EX6.m EX6.m EX6.m EX6.m EX6.m EX6.m EX6.m	n n 1 question 2.m		QUESTION4b.m × QUESTION4c.m × Ex10.m × QUESTION4a.m × Question1.m × 1 - commandwindow 2 - clear 3 - clc 4 - close all 5 - syms t 6 - x = (1/10) * (-exp(-2*t) + exp(-3*t) + sin(1*t) + cos(1*t)) 7 - tn = (0:0.01:15) 8 - Xn = subs(x,tn) 9 - figure(1) 10 - plot(tn,Xn) 11 - xlabel('Time(seconds)') 12 - ylabel('Vibrations') 13 - grid on 14 - grid minor 15 - axis tight
Details		^	Command Window
Workspace Name 🔺	Value 1x1 sym	•	14.8200 14.8300 14.8400 14.8500 14.8600 14.8700 14.88 Columns 1496 through 1501
tn 🖬 x 🗑 Xn	1x1501 double 1x1 sym 1x1501 sym		14.9500 14.9600 14.9700 14.9800 14.9900 15.0000
			<pre>Xn = [1/10, cos(1/100)/10 - exp(-1/50)/10 + exp(-3/100)/10 + sin(1/100)/ ft >> <</pre>

Figure 1.1: Code from Mathlab for plotting the graph of x against t.

Figure 1.2: graph showing relationship between x and t from $0 \le t \le 15$ unit.

3) Write the steady-state solution of the system in the form of $x = K \sin (t + a)$. SOLUTION

The solution of the equation contains both transient part and a steady state part which are as follows:

Transient part = 1/10(e-2t + e-3t)Steady state part = 1/10 (sint + cost) = 1/10 sin t + 1/10 cost Using trigonometric method of adding trigonometric functions, Asint + B cost = C sin (t + θ) Where θ = tan-1(A/B) $C = (A^2 + B^2)^{1/2}$ Using that in our steady state part, the steady part becomes:

1/10sint + 1/10cost = Ksin(t+a)

Where;

 $K = ((-0.1)^2 + 0.1^2)^{1/2} = (2)^{1/2}/10$ a = tan-1(-0.1/0.1) = -45°

Hence the steady state solution of the system in the form x = Ksin (t+a) is: $X = ((2)^{1/2}/10)(sin(t-45^{\circ}))$