ENGINEERING MATHEMATICS ASSIGNMENT I

PROBLEM AND SOLUTION

The dynamic model of a body in motion performing damped forced vibrations is as in Equation (1),
$\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}+5 \mathrm{dx} / \mathrm{dt}+6 \mathrm{x}=\mathrm{cost}$
Given that when $\mathrm{t}=0, \mathrm{x}=0.1$ and $\mathrm{dx} / \mathrm{dt}=0$,

1) Using the Auxiliary Equation Method, obtain the solution of the model in the form of an expression having x as a function of t .

SOLUTION

For the complementary function (CF),

$$
\begin{equation*}
\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}+5 \mathrm{dx} / \mathrm{dt}+6 \mathrm{x}=\mathrm{cost} \tag{1}
\end{equation*}
$$

Assume
$\mathrm{f}(\mathrm{t})=0$
$\mathrm{x}=\mathrm{Ae} \mathrm{e}^{\mathrm{kt}}$
$\mathrm{dx} / \mathrm{dt}=\mathrm{kAe}^{\mathrm{kt}}=\mathrm{kx}$
$d^{2} x / d t^{2}=k^{2} A e^{k t}=k^{2} x$ (iv)

By substituting equations (i), (ii), (iii) and (iv) into equation (1), equation (1) becomes:
$k^{2} x+5 k x+6 x=0$
$\mathrm{x}\left(\mathrm{k}^{2}+5 \mathrm{k}+6\right)=0$
$\mathrm{x}=0$ and
$\mathrm{k}^{2}+5 \mathrm{k}+6=0$ Auxiliary Equation

Using factorization method,
$\mathrm{k}^{2}+2 \mathrm{k}+3 \mathrm{k}+6=0$
$k(k+2)+3(k+2)=0$
$(k+2)(k+3)=0$
$K=-2$ or -3
Hence;
$\mathrm{K}_{1}=-2$ and $\mathrm{K}_{2}=-3$
Thus, the complementary function of equation (1) becomes:
$x=\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-3 \mathrm{t}}$
+For the particular integral (PI),
Assume
$\mathrm{x}=\mathrm{C} \sin \mathrm{t}+\mathrm{D} \cos \mathrm{t}$
$\mathrm{dx} / \mathrm{dt}=\mathrm{Ccost}-\mathrm{D} \operatorname{sint}$
$d^{2} x / d t^{2}=-C \sin t-$ Dcost $=-(C \sin t+$ Dcost $)$
By substituting equations (I), (II) and (III) into equation (1), equation (1) becomes:

- Csint - Dcost $+5($ Ccost - Dsint $)+6(C \operatorname{sint}+$ Dcost $)=\cos t$
$(-D+5 C+6 D) \operatorname{cost}+(-C-5 D+6 C) \operatorname{sint}=\cos t$
By comparing coefficients;
cost: $5 \mathrm{C}+5 \mathrm{D}=1$
sint: $5 \mathrm{C}-5 \mathrm{D}=0$
Equation (IV) + equation (V)
$10 \mathrm{C}=1, \mathrm{C}=1$
Put $\mathrm{C}=1 / 10$ into equation (IV),
$5(1 / 10)+5 \mathrm{D}=1 ;$
$5 \mathrm{D}=1-(1 / 2)=1 / 2$
$\mathrm{D}=(1 / 2) \mathrm{X}(1 / 5)=1 / 10$
Putting the values of C and D into equation (I), equation (I) which is the (PI) becomes:
$\mathrm{x}=(1 / 10) \sin \mathrm{t}+(1 / 10) \cos \mathrm{t}$
$x=(1 / 10)(\operatorname{sint}+\cos t)$
Hence:
The complete solution of the equation using the auxiliary equation method is:
$x=A e^{-2 t}+B e^{-3 t}+(1 / 10)(\sin t+\cos t)$
By putting $\mathrm{x}=0.1$ and $\mathrm{t}=0$ into equation (4), equation (3) becomes:
$0.1=\mathrm{Ae}^{-2(0)}+\mathrm{Be}^{-3(0)}+(1 / 10)(\sin (0)+\cos (0))$
$0.1=\mathrm{A}+\mathrm{B}+1 / 10$
$\mathrm{A}+\mathrm{B}=1 / 10-1 / 10=0$;
$\mathrm{A}+\mathrm{B}=0, \mathrm{~A}=-\mathrm{B}$
Also, by differentiating x :
$\mathrm{dx} / \mathrm{dt}=-2 \mathrm{Ae}^{-2 \mathrm{t}}-3 \mathrm{Be}^{-3 \mathrm{t}}+(1 / 10)($ cost $-\sin t)$
Putting $d x / d t=0, t=0$ and $A=-B$
$0=-2(-\mathrm{B}) \mathrm{e}^{-2(0)}-3 \mathrm{Be}^{-3(0)}+(1 / 10)(\cos (0)-\sin (0))$
$0=2 \mathrm{~B}-3 \mathrm{~B}+1 / 10$
$B=1 / 10$
$\mathrm{A}=-\mathrm{B}=-(1 / 10)$
Hence the complete particular solution becomes:
$x=(1 / 10)\left(-e^{-2 t}+e^{-3 t}\right)+(1 / 10)(\operatorname{sint}+\cos t)$
$\mathrm{x}=(1 / 10)\left(-e^{-2 \mathrm{t}}+\mathrm{e}^{-3 \mathrm{t}}+\sin \mathrm{t}+\cos \mathrm{t}\right)$

2) Write a MATLAB program to plot the relationship between x and t for $0<=\mathrm{t}<=15$ unit using a step size of 0.01 unit.

Solution

Figure 1.1: Code from Mathlab for plotting the graph of x against t .
© Figure 1
File Edit View Insert Tools Desktop Window Help

Figure 1.2: graph showing relationship between x and t from $0<=\mathrm{t}<=15$ unit.
3) Write the steady-state solution of the system in the form of $x=K \sin (t+a)$.

SOLUTION

The solution of the equation contains both transient part and a steady state part which are as follows:
Transient part $=1 / 10(\mathrm{e}-2 \mathrm{t}+\mathrm{e}-3 \mathrm{t})$
Steady state part $=1 / 10(\operatorname{sint}+\operatorname{cost})=1 / 10 \sin t+1 / 10 \cos t$
Using trigonometric method of adding trigonometric functions,
Asint $+B \cos t=C \sin (t+\theta)$
Where $\theta=\tan -1(\mathrm{~A} / \mathrm{B})$
$C=\left(A^{2}+B^{2}\right)^{1 / 2}$
Using that in our steady state part, the steady part becomes:
$1 / 10 \operatorname{sint}+1 / 10 \cos t=K \sin (t+a)$
Where;
$\mathrm{K}=\left((-0.1)^{2}+0.1^{2}\right)^{1 / 2}=(2)^{1 / 2} / 10$
$a=\tan -1(-0.1 / 0.1)=-45^{\circ}$
Hence the steady state solution of the system in the form $x=K \sin (t+a)$ is:
$X=\left((2)^{1 / 2} / 10\right)\left(\sin \left(t-45^{\circ}\right)\right)$

