QUESTION 1 [20 Marks]

A flat plate of mass m falling freely in air with velocity V is subjected to a downward gravitational force and an upward frictional drag force due to air. If the drag force, FD, is given by Equation (1),
$\mathrm{F}_{\mathrm{D}}=\frac{0.3 \mathrm{~V}^{2}}{500+(\ln V)^{3}}-0.02 \mathrm{~V}$
and the terminal velocity is reached when the drag force equals the gravitational force, that is,
$F_{D}=m g$
taking the values of m and g to be 3.5 kg and $9.8 \mathrm{~m} / \mathrm{s} 2$ respectively, using a guess value of $\mathrm{V}_{0}=0.5$ m / s and employing fixed-point iteration method, develop a MATLAB program to estimate the terminal velocity. Take the absolute percentage relative error tolerance to be less than or equal to 1E-11.

SOLUTION

Using fixed-Point iteration Method:
since equation (1) = equation (2) $=F_{D}$
Hence, $\mathrm{F}_{\mathrm{D}}=\mathrm{mg}=\frac{0.3 V^{2}}{500+(\ln V)^{3}}-0.02 \mathrm{~V}$
$\mathrm{m}=3.5 \mathrm{~kg}$ and $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s} 2$
Hence, $\mathrm{F}_{\mathrm{D}}=\mathrm{mg}=3.5 \mathrm{X} 9.8=34.3$
Therefore,
$\mathrm{F}_{\mathrm{D}}=\frac{0.3 \mathrm{~V}^{2}}{500+(\ln V)^{3}}-0.02 \mathrm{~V}=34.3$
making $\mathrm{F}_{\mathrm{D}}=0$
$\frac{0.3 V^{2}}{500+(\ln V)^{3}}-0.02 \mathrm{~V}-34.3=0$
Making V as subject of formula

$$
\begin{aligned}
& 0.02 \mathrm{~V}+34.3=\frac{0.3 V^{2}}{500+(\ln V)^{3}} \\
& (0.02 \mathrm{~V}+34.3) \mathrm{X}\left(500+(\ln V)^{3}\right)=0.3 V^{2} \\
& \left((0.02 \mathrm{~V}+34.3) \mathrm{X}\left(500+(\ln V)^{3}\right)\right) / 0.3=\mathrm{V}^{2} \\
& \mathrm{~V}=\left(\left((0.02 \mathrm{~V}+34.3) \mathrm{X}\left(500+(\ln V)^{3}\right)\right) / 0.3\right)^{\wedge}(0.5) \\
& \mathrm{Vi}+1=\left(\left((0.02 \mathrm{Vi}+34.3) \mathrm{X}\left(500+(\ln V i)^{3}\right)\right) / 0.3\right)^{\wedge}(0.5)
\end{aligned}
$$

$$
\text { Ans }=V=304.0675323 \mathrm{~m} / \mathrm{s}
$$

Codes for the Fixed-Point Iteration using MATLAB

RESULT OF THE CODE

