Math assignment 4
Mrhammed
17 len $40070{ }_{5} 5$
Mechanical Grgineerp
(4)
solutuox
$y=$ the anort of ain at met $\mathrm{f} \mathrm{ft}^{3}$ a the ram .
$\frac{d y}{d t} \rightarrow$ feshair lnflowithe-freil aiontflow de.
Freath in toflow \rightarrow sonft ${ }^{2} /$ min
freshaï mifflow
$=600=0.03 \mathrm{~mm}$.
20000
T.e $0.03 y f f s / \mathrm{min}$
$d y=600-0.03 y$.
$=0.031+6000^{\circ}$
$=-0.03(y-20000)$
$\left(\frac{d y}{\left(\frac{d y}{y-20000}\right)}\right.$
$\int \frac{d y}{(y-200 t)}=\int-0 \cdot 3 d t$
$(y-20000)$
$=\ln (y-20000)=-0.03 t+C$.
$y-20000=e^{(-0.03 t+c)}$
$y-20000=e^{-0.03 t} e^{c}$
reall i $C=R^{c}$
$y-20000=e^{0.03 t \cdot C}$
$t \quad t=0$
$y-20000=e^{-(0.03 k)}$
$0-20000=e^{0 \cdot c}$
puteqn2mto
$y=20000-20000 e^{-0.036}$
$y=20000\left(1-e^{-0.036}\right)$
b)

Tine at inoch 90% of the ais is the womicill beove thal.

$$
\begin{aligned}
& 9.9 \%=\frac{90}{100}=0.9 \\
& y=0.9 \times 20000 \text {; is } 90 \% \text { of ain is the vorm } \\
& =1800 \mathrm{fb}^{3} \\
& y=20000\left(1-e^{-0.036}\right) \\
& 18000=20000\left(1-e^{-0.03 t}\right) \\
& 0.9=1-e^{-0.03 t} \\
& e^{-0.03 t}=1-0.7 . \\
& -0.03 t=\ln (0.1) \text {. } \\
& t=\frac{\ln 01}{-0.03} \\
& =76.77 \mathrm{mins} \bumpeq 77 \mathrm{mins}
\end{aligned}
$$

c) Write the aid of mathb, plot the dynanze vepue of the annt if freptin in the wom for $t=0 \rightarrow$ blies.

$$
\begin{aligned}
& t=8 \mathrm{cos} \\
& 6 \times 60 \mathrm{~s}=3 \mathrm{tomom}
\end{aligned}
$$

$81 / n$
Comenend unndow
clea
Cle
Aloreal

$$
\begin{aligned}
& \text { Syms } y_{1} t \\
& y=20000 *\left(1-\exp \left(-0.03^{*} t\right)\right) \\
& t=0: 5: 360 \\
& y_{n}=\operatorname{Subs}(y) \\
& \text { plot }\left(t, y_{n}\right)
\end{aligned}
$$

x (abel ('TimeCmin)').
flasel (flowate of freshanr (ft $\left.\left.{ }^{n} 3 / \mathrm{mm}^{\prime}\right)^{\prime}\right)$
and on
Gord nonen
Axershgt
outper

d) Steedy state value
stecely stake rache $=$
$20000 \mathrm{ff}^{3}$ at 215 min (3hread 3 imins) of exp appurch
a) Commen is

The frection above showes an exporectial eoppureel to the limit of $2000 \mathrm{ft}^{3}$ as y hereages with time Alrg when the SSV eppacll $2000 \mathrm{ft}^{3}$ of 215 mms . The model becames use veala te
in preumatio technology.

