Assignment 2

Ibrahim Abdul-Hamid
17) ENG O61040

Mechanical Engineering
y $x^{2}+x$ anent
$y=e^{2}+x$
$y^{\prime}=(2 x+1) e^{x^{2}+x}$
$y^{\prime \prime}=2 e^{x^{2}+x}+(2 x+1)(2 x+1) e^{x^{2}+x}$
$\left.y^{\prime \prime}=2 e^{x^{2}+(2 x+1)^{2}} e^{x^{2}+x}(1)-1\right)$
$y^{\prime}(2 x+1)+2 y$
$=(2 x+1) e^{x^{2}+x} \cdot(2 x+1)+2\left(x^{2}+x\right)$
$=(2 x+1)^{2} e^{x^{2}+x}+2 e^{x^{2}+x}$
but $y^{\prime \prime}=2 e^{x^{2}+x}+(2 x+1)^{2} e^{x^{2}+x}$
$\therefore y^{\prime \prime}=y^{\prime}(2 x+1)+2 y$
from the equation above,
Part A,

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { art } A, \\
A=y^{11}, A^{\prime}=y^{\prime \prime \prime}, A^{n}=y^{2+n} \\
\text { Part } R
\end{array}
\end{aligned}
$$

Part B
Part B
$B=y^{\prime}(2 x+1)$
$u=y^{\prime}, u^{n}=y^{n+1}$ ar to $+x^{n}+\operatorname{dCos}_{4 x}$
$v=2 x+1, v^{\prime}=0$
$\therefore \frac{B^{n}}{R^{n}}=\left(y^{n}+1\right)(2 x+1)+n\left(y^{n}\right)(2)+0$ $B^{n}=(2 x+1) y^{n+1}+2 n y^{n}$
Part C,
$C=2 y \quad x^{n}$ $C^{n}=2 \hat{2}^{n}$
$A^{n}=B^{n}+C^{n}$
$y^{n}+2$ $y^{n+2}=(2 x+1) y^{n+1}+2 n y^{n}+2 y^{n}-$
$y^{n+2}=(2 x+1) y^{n+1}+2 y^{n}(n+1)$
$y^{n+2}=(2 x+1) y^{n+1}+2(n+1) y^{n}$
2. $y=x^{3} e^{4 x}, y(5)$

Let $u=e^{4}, v^{\prime}=4 e^{x^{x}}, y^{\prime \prime}=16 e^{4 x}, y^{n}=4^{n} e^{4 x}$
Let $V=x^{3}, V^{\prime}=3 x^{2}, V^{\prime \prime}=6 x, V^{\prime \prime \prime}=0$
By Leibniz theorem,

$$
\begin{aligned}
& y^{n}=4^{n} e^{4 x} \cdot x^{3}+n \cdot 4^{n-1} e^{4 x} \cdot 3 x^{2}+\frac{n(n-1) \cdot 4^{n-2} e^{4 x} \cdot 6 x+\frac{n(n-1)(n-2)}{2!}}{4^{n} e^{4 x} \cdot 6+c} \\
& y^{n}=4^{n} e^{4 x} \cdot x^{3}+3 x^{2} n \cdot 4^{n-1} e^{4 x}+3 n(n-1) \cdot 4^{n-2} e^{4 x} x \\
& n(n-1)(n-2) \cdot 4^{n-3} e^{4 x} \\
& \therefore y^{5}=4^{5} e^{4 n} \cdot x^{3}+3 x^{2}(5) \cdot 4^{4} e^{4 x}+3(5)(4) \cdot 4^{3} e^{4 x} \cdot x+(5)(4 \\
& (3) \cdot 4^{2} e^{4 x} \\
& y^{5}=1024 e^{4 x} \cdot x^{3}+3740 e^{4 n} \cdot x^{2}+3840 e^{4 n} \cdot x+960 e^{4 x} \\
& y^{5}=64 e^{4 x}\left(16 x^{3}+60 x^{2}+60 x+15\right) .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0 \\
& \text { For Part } A, A=x^{2} y^{\prime \prime} \\
& y=y^{\prime \prime}, U^{n}=y^{n+2} \\
& V=x^{2}, V^{\prime}=2 x, V^{\prime \prime}=2, V^{\prime \prime \prime}=0
\end{aligned}
$$

$$
U^{4}=y^{n}, \mathcal{U}^{n}=y^{n+2} A^{n}=\left(y^{n+2}\right) x^{2}+n\left(y^{n+1}\right) \cdot 2 x+\frac{n(n-1)}{2!} \text {. }
$$

$$
\gamma\left(y^{n}\right) \cdot 270
$$

$$
A^{n}=x^{2} y\left(^{(n+2)}+2 x n y^{(n+1)}+n(n-1) y^{n}\right.
$$

For Part B,

$$
B=x y^{\prime}
$$

$$
\begin{aligned}
& u=y^{\prime}, y^{n}=y^{n+1}- \\
& v=x, \quad v^{\prime}=1, v^{\prime \prime}=0
\end{aligned}
$$

B^{n}	$=\left(y^{n+1}\right) \cdot x+n\left(y^{n}\right) \cdot 1+0$
	$=x y(n+1)+n y^{n}$
For Part c,	
C	$=y$
C^{n}	$=y^{n}$
\therefore	$A^{n}+B^{n}+C^{n}=0$
	$=x^{2} y c^{(n+2)}+2 x n y^{(n+1)}+\left(n^{2}-n\right) y^{n}+2 x y(n+1)+n y n+y n=0$
	$=x^{2} y^{(n+2)}+x y^{(n+1)(2 n+1)+y^{n}\left(n^{2}-n+1 \times+1\right)=0}$
	$=x^{2} y^{(n+2)}+(2 n+1) x y^{(n+1)}+\left(n^{2}+1\right) y^{n}=0$

