

## AFE BABALOLA UNIVERSITY, ADO-EKITI, EKITI STATE, NIGERIA COLLEGE OF ENGINEERING

## **BACHELOR OF ENGINEERING ASSIGNMENT I**

**ENG 381: Engineering Mathematics III** 

| Session: 2019/2020 | Semester: First | Unit: 3 | Duration: 3 days |
|--------------------|-----------------|---------|------------------|
|                    |                 |         |                  |

Instruction: Answer all the questions.

## Question 1 [20 Marks]

The dynamic model of a body in motion performing damped forced vibrations is as in Equation (1).

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = \cos t \tag{1}$$

Given that when t = 0, x = 0.1 and  $\frac{dx}{dt} = 0$ ,

- (a) using the Auxiliary Equation Method, obtain the solution of the model in form of an expression having x as a function of t,
- (b) with the aid of a MATLAB *mfile* program, plot the relationship between x and t for  $0 \le t \le 15$  time unit using a step size of 0.01 unit, and
- (c) write the steady-state solution of the model in form of  $x = K \sin(t + a)$ .