OLUWASUSI IYANU 17/eng03/044

1. HEC-HMS

The Hydrologic Modeling System (HEC-HMS) is designed to simulate the hydrologic processes in basins. The software includes traditional procedures of hydrologic analysis, such as infiltration events, unit hydrograms and routing. HEC-HMS also includes modules for evapotranspiration, snow melting and calculus of soil humidity.

2. iRIC

iRIC (International River Interface Cooperative) is a software developed with the purpose of offering a complete simulation environment of the riverbed and its results can be exported and used to analyze, mitigate and prevent disasters, through the visualization of the results of the river simulation.

3. MT3DMS

The MT3DMS package is a mass transport model coupled to a flux model in MODFLOW. The MT3DMS code simulates advection, dispersion/diffusion and chemical reactions of adsorption/absorption of contaminants in groundwater.

4. R

R is a programming language for statistic calculations and graphics generation. It is easy to understand and makes it possible to make complicated analysis with just a few lines of code.

It is the best option to perform spatial analysis since it incorporates several interpolation options.

5. Python

This is the favorite code for scientific, water resources and environment analysis. It has several packages for different tools such as GIS, mathematical analysis and artificial intelligence.

If a complete tool for manipulation, processing and plotting of data is needed, Python – Scipy is an effective, versatile and free code solution.

_			-	-	-		
1	time	runoff	baseflow	direct runc	depth of d	2hr unit hy	ydrograph ordinate
2	1	110	110	0	1.415	0	
3	2	120	110	10	1.415	7.067138	
4	3	230	110	120	1.415	84.80565	
5	4	570	110	460	1.415	325.0883	
6	5	640	110	530	1.415	374.5583	Chart Titla
7	6	430	110	320	1.415	226.1484	Chart Title
8	7	290	110	180	1.415	127.2085	i Chart Itle
9	8	200	110	90	1.415	63.60424	700
10	9	160	110	50	1.415	35.33569	600
11	10	120	110	10	1.415	7.067138	500
12	11	90	90	0	1.415	0	
13	12	80	80	0	1.415	0	400
14							300
15							200
16							100
17							0 70
18							100 0 2 4 6 8 10 12 14
19							-100
20							
21							