

Given that $f(\infty) = 2x^3 - 7x$ and $g(\infty) = -3x$ find (f-g)(5)A) $f(\infty) = 2x^3 - 7x$, $g(\infty) = -3x$ $(f-g) = 2x^3 - 7x - (3x)$ $= 2x^3 - 7x + 3x$ $= 2x^3 + 10x$ $(f-g)(5) = (2x^3 + 10x)(5)$ $= 10x^3 + 50x$

The fixe = $x^2 \cos x$ Using product rule $u = x^2$ $v = \cos x$ $du = x^2$ $v = \cos x$ $du = x^2$ $du = -\sin x$ $du = \cos x(2xx) + x^2(-\sin x)$ $du = \cos x(2xx) + x^2(-\sin x)$ $du = \cos x(2xx) + x^2(-\sin x)$