16/ENG02/062 HASHIM ABDULHADI

QUESTION 1

Linear programming refers to a mathematical modelling technique that deals with the optimization of linear functions or expressions (objective function), example, to minimize or maximize. With given constrains. These constrains are referred to a feasible region or solution space. Example Maximize x^5 + y^6 Where 1<=x >=15 And 0<=y>=10 The limits of x, and y are referred to as the solution space. Examples of Algorithms include:

- 1. Criss-Cross algorithm
- 2. Simplex algorithm

Application of Linear Programming to Engineering

1. Modelling and Designing of system:

Example: Design of Drones Delivery system that takes into consideration the Battery Consumption rate, payload, weather and distance. Amazon Prime Air are currently experimenting with such a system that would be able to deliver parcels to consumers, while minimizing for cost and delivery time. Taking into consideration that the battery is a linear function of the payload, which means that the battery consumption rate depends on how heavy what its carrying is.

Example 2: In the design of cars which is optimized for speed, which various constraints such as Engine type, weights, tire types, etc.

2. Simulation Software:

Example: Modeling and Simulation of Growth and Lipid Accumulation of Phaeodactylum tricornutum. To accomplish this, a simulation software is used to optimize for nutrient content while putting a constrains on the light intensity that should hit the produce and also finding the minimum amount of electricity required to carry this out.

	n602/062	HASHIM
P= pointers made et week		
K= Keiner de la comme		
- were per week		
1111 CADRIDATER:		
M = 30P + 20F		
Comptende		
3P+K×1000		
$P + K \leq 800$		
= 100 - 30P - 30K = 0		
PKS	Sa M	
first part of T2] 1 1	0 0	1000
1 1 0	10	800
30 20 0	0 1	m
PKS	fz M	
1 1/2 1/2	0 0	500
1 1 0	10	800
-30 1 0	0	0
- Ru + Rz -> Rr		
30R + RO > R3		
PKS	Se M	
1 1/2 1/2	0 0	500
O the 1k	0	300
0 -5 15	0 1	5000

QUESTION 2

E arz P M 57 SZ K 8 Pa 51 7 500 1/2 1/2 0 0 XXX O 600 0 1 2 -1 K -5 15 15000 0 -1/2R2 + R1 Sr CI Sr 5 Rr + R3 Rr ×2 -1 P 1 200 0 0 600 4 K O -1 9 2 0 0 10 10 18,000) M Emaximum Value) Provents = 200 reybourss = 600 ٢ C= SOPA 20K -: 30 hos) + 28 (600) = 18000