NAME: AWALA DIVINE PAUL MATRIC NO: 19/ENG05/016 DEPARTMENT: MECHATRONICS ENGINEERING. COURSE: MAT 102

COVID-19 HOLIDAY ASSIGNMENT

QUESTION 1

Show that the points A(6, -5), B(-2, 1) and C(0, 3) form an isosceles triangle.

SOLUTION: $\overline{AB} = \sqrt{(-2-6)^2 + (1-(-5))^2}$ $=\sqrt{(-8)^2+6^2}$ $=\sqrt{64+36}$ $=\sqrt{100}$ = 10 $\overline{BC} = \sqrt{(0 - (-2))^2 + (3 - 1)^2}$ $=\sqrt{2^2+2^2}$ $=\sqrt{4+4}$ $=\sqrt{8}$ $=2\sqrt{2}$ $\overline{\text{AC}} = \sqrt{(0-6)^2 + (3-(-5))^2}$ $=\sqrt{(-6)^2+8^2}$ $=\sqrt{36 + 64}$ $=\sqrt{100}$ = 10 $\therefore \overline{AB} = \overline{AC}$ Let the triangle be

Since two sides of the triagle \overline{AB} and \overline{AC} are equal, it forms an Isosceles triangle.

QUESTION 2

If P, Q and R are points (5, -3), (-4, 9) and (14, -15) respectively. Find the ratio in which

(a) P divides QR

(b) R divides PQ

 $5k - 14k = -4\ell - 5\ell$ - 9k = -9\ell k = ℓ \therefore k : $\ell = 1 : 1$ \therefore The ratio in which P divides \overline{QR} is 1 : 1.

(b) R divides \overline{PQ} externally

From the graph; $(x_1, y_1) = (5, -3)$ $(x_2, y_2) = (-4, 9)$ (x, y) = (14, -15)Let $y_1 = -3$ $y_2 = 9$ y = -15But $y = \frac{\ell y_1 - k y_2}{\ell - k}$ $-15 = \frac{-3\ell - 9k}{\ell - k}$ $-15(\ell - k) = -3\ell - 9k$ $-15\ell + 15k = -3\ell - 9k$ $15k + 9k = 15\ell - 3\ell$ $24k = 12\ell$ $\frac{k}{\ell} = \frac{24}{12} = \frac{2}{1}$ \therefore The ratio k : $\ell = 2 : 1$ \therefore The ratio in which R divides \overline{PQ} is 2 : 1.