NAME: AWALA DIVINE PAUL
MATRIC N0: 19/ENG05/016
DEPARTMENT: MECHATRONICS ENGINEERING.
COURSE: MAT 102

COVID-19 HOLIDAY ASSIGNMENT

QUESTION 1

Show that the points $\mathrm{A}(6,-5), \mathrm{B}(-2,1)$ and $\mathrm{C}(0,3)$ form an isosceles triangle.
SOLUTION:

$$
\begin{aligned}
& \overline{\mathrm{AB}}=\sqrt{(-2-6)^{2}+(1-(-5))^{2}} \\
&=\sqrt{(-8)^{2}+6^{2}} \\
&=\sqrt{64+36} \\
&=\sqrt{100} \\
&=10 \\
& \overline{\mathrm{BC}}=\sqrt{(0-(-2))^{2}+(3-1)^{2}} \\
&=\sqrt{2^{2}+2^{2}} \\
&=\sqrt{4+4} \\
&=\sqrt{8} \\
&=2 \sqrt{2} \\
& \overline{\mathrm{AC}}=\sqrt{(0-6)^{2}+(3-(-5))^{2}} \\
&=\sqrt{(-6)^{2}+8^{2}} \\
&=\sqrt{36+64} \\
&=\sqrt{100} \\
&=10 \\
& \therefore \overline{\mathrm{AB}}=\overline{\mathrm{AC}}
\end{aligned}
$$

Let the triangle be

Since two sides of the triagle $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are equal, it forms an Isosceles triangle.

QUESTION 2

If P, Q and R are points $(5,-3),(-4,9)$ and $(14,-15)$ respectively. Find the ratio in which
(a) P divides QR
(b) R divides PQ

SOLUTION:

(a) P divides $\overline{\mathrm{QR}}$ internally

From the graph; $\left(x_{1}, y_{1}\right)=(-4,9)$

$$
\begin{aligned}
& \left(x_{2}, y_{2}\right)=(14,-15) \\
& (x, y)=(5,-3)
\end{aligned}
$$

Let $x_{1}=-4$
$x_{2}=14$
$x=5$
But $x=\frac{k x_{2}+\ell x_{1}}{k+\ell}$
$5=\frac{14 k-4 \ell}{k+\ell}$
$5(\mathrm{k}+\ell)=14 \mathrm{k}-4 \ell$
$5 \mathrm{k}+5 \ell=14 \mathrm{k}-4 \ell$
$5 \mathrm{k}-14 \mathrm{k}=-4 \ell-5 \ell$
$-9 \mathrm{k}=-9 \ell$
$\mathrm{k}=\ell$
$\therefore \mathrm{k}: \ell=1: 1$
\therefore The ratio in which P divides $\overline{\mathrm{QR}}$ is $1: 1$.
(b) R divides $\overline{\mathrm{PQ}}$ externally

From the graph; $\left(x_{1}, y_{1}\right)=(5,-3)$

$$
\left(x_{2}, y_{2}\right)=(-4,9)
$$

$$
(x, y)=(14,-15)
$$

Let $y_{1}=-3$

$$
y_{2}=9
$$

$$
y=-15
$$

But $y=\frac{\ell y_{1}-k y_{2}}{\ell-\mathrm{k}}$
$-15=\frac{-3 \ell-9 \mathrm{k}}{\ell-\mathrm{k}}$
$-15(\ell-\mathrm{k})=-3 \ell-9 \mathrm{k}$
$-15 \ell+15 \mathrm{k}=-3 \ell-9 \mathrm{k}$
$15 \mathrm{k}+9 \mathrm{k}=15 \ell-3 \ell$
$24 \mathrm{k}=12 \ell$
$\frac{k}{\ell}=\frac{24}{12}=\frac{2}{1}$
\therefore The ratio $\mathrm{k}: \ell=2: 1$
\therefore The ratio in which R divides $\overline{\mathrm{PQ}}$ is $2: 1$.

