1a)

1a) Measure of correctness: The use of formal methods provides a measure of the correctness of a system, as opposed to the current process quality measures.

b. Early defect detection: Formal Methods can be applied to the earliest design artifacts, thereby leading to earlier detection and elimination of design defects.

c. Guarantees of correctness: Formal analysis tools such as model checkers consider all possible execution paths through the system. If there is any possibility of a fault/error, a model checker will find it. In a multithreaded system where concurrency is an issue, formal analysis can explore all possible interleaving and event orderings. This level of coverage is impossible to achieve through testing.

d. Error Prone: Formal description forces the writer to ask all sorts of questions that would otherwise be postponed until coding. This helps to reduce the errors that occur during or after coding. Formal methods have the property of completeness, i.e. it covers all aspects of the system.

e. Abstraction: If the working of software or hardware product is simple, then one can write the code straight away, but in the majority of systems the code is far too big, which generally needed the detailed description of the system. A formal specification, on the other hand, is a description that is abstract, precise and in some senses complete. The abstraction allows a human reader to understand the big picture of the software product easily.

f. Rigorous Analysis: The formality of the description allows us to carry out rigorous analysis. Formal descriptions are generally written from different points of view, by which one can determine important properties such as satisfaction of high level requirements or correctness of a proposed design.

g. Trustworthy: Formal methods provide the kind of evidence that is needed in heavily regulated industries such as aviation. They demonstrate and provide concrete reasons for the trust in the product.

h. Effective Test Cases: From formal specification, we can systematically derive effective test cases directly from the specification. It’s a cost effective way to generate test cases.

1b)A functional requirement defines a system or its component whereas a non-functional requirement defines the performance attribute of a software system.

Functional requirements along with requirement analysis help identify missing requirements while the advantage of Non-functional requirement is that it helps you to ensure good user experience and ease of operating the software.

Functional Requirement is a verb while Non-Functional Requirement is an attribute

Types of Non-functional requirement are Scalability Capacity, Availability, Reliability, Recoverability, Data Integrity, etc. whereas transaction corrections, adjustments, and cancellations, Business Rules, Certification Requirements, Reporting Requirements, Administrative functions, Authorization levels, Audit Tracking, External Interfaces, Historical Data management, Legal or Regulatory Requirements are various types of functional requirements.

2a)WATERFALL 

The waterfall model is a sequential development approach, in which development is seen as flowing steadily downwards (like a waterfall) through several phases, typically:

Requirements analysis resulting in a software requirements specificationSoftware designImplementationTestingIntegration, if there are multiple subsystemsDeployment (or Installation)Maintenance

The first formal description of the method is often cited as an article published by Winston W. Royce in 1970 although Royce did not use the term "waterfall" in this article. Royce presented this model as an example of a flawed, non-working model.

SPIRAL

In 1988, Barry Boehm published a formal software system development "spiral model," which combines some key aspect of the waterfall model and rapid prototypingmethodologies, in an effort to combine advantages of top-down and bottom-upconcepts. It provided emphasis in a key area many felt had been neglected by other methodologies: deliberate iterative risk analysis, particularly suited to large-scale complex systems

3b) Propositional logic (also called sentential logic) is logic that includes sentence letters (A,B,C) and logical connectives, but not quantifiers. The semantics of propositional logic uses truth assignments to the letters to determine whether a compound propositional sentence is true.

Predicate logic is usually used as a synonym for first-order logic, but sometimes it is used to refer to other logics that have similar syntax. Syntactically, first-order logic has the same connectives as propositional logic, but it also has variables for individual objects, quantifiers, symbols for functions, and symbols for relations. The semantics include a domain of discourse for the variables and quantifiers to range over, along with interpretations of the relation and function symbols.

3b)m1=mortal

m2=man

P1=every man is mortal

P2=smith is a man

[Smith is mortal]

∀(m2): m1 (p1, p2)

4a)o=object

m=monkey

~m=not monkey

∃(o):m v ~m

5ai)Well-formed formula. In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simplyformula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

ii)In natural languages, a quantifier turns a sentence about something having some property into a sentence about the number (quantity) of things having the property. 

iii)In first order logic, “predicate” is a unary relation. For example, p(x) means p(x) is true. ... But in programing language, “predicate” just means a function that return true or false.

iv)Usually, the term refers to computer-generated image data created with the help of specialized graphical hardware and software. 

6a)PrototypingEdit

Software prototyping is about creating prototypes, i.e. incomplete versions of the software program being developed.

The basic principles are:[1]

Prototyping is not a standalone, complete development methodology, but rather an approach to try out particular features in the context of a full methodology (such as incremental, spiral, or rapid application development (RAD)).Attempts to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.The client is involved throughout the development process, which increases the likelihood of client acceptance of the final implementation.While some prototypes are developed with the expectation that they will be discarded, it is possible in some cases to evolve from prototype to working system.

A basic understanding of the fundamental business problem is necessary to avoid solving the wrong problems, but this is true for all software methodologies.

Incremental developmentEdit

Main article: Iterative and incremental development

Various methods are acceptable for combining linear and iterative systems development methodologies, with the primary objective of each being to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.

There are three main variants of incremental development:[1]

A series of mini-Waterfalls are performed, where all phases of the Waterfall are completed for a small part of a system, before proceeding to the next increment, orOverall requirements are defined before proceeding to evolutionary, mini-Waterfall development of individual increments of a system, orThe initial software concept, requirements analysis, and design of architecture and system core are defined via Waterfall, followed by incremental implementation, which culminates in installing the final version, a working system.

Rapid application developmentEdit

Rapid Application Development (RAD) Model

Rapid application development (RAD) is a software development methodology, which favors iterative development and the rapid construction of prototypes instead of large amounts of up-front planning. The "planning" of software developed using RAD is interleaved with writing the software itself. The lack of extensive pre-planning generally allows software to be written much faster, and makes it easier to change requirements.

The rapid development process starts with the development of preliminary data modelsand business process models using structured techniques. In the next stage, requirements are verified using prototyping, eventually to refine the data and process models. These stages are repeated iteratively; further development results in "a combined business requirements and technical design statement to be used for constructing new systems".3

The term was first used to describe a software development process introduced by James Martin in 1991. According to Whitten (2003), it is a merger of various structured techniques, especially data-driven information technology engineering, with prototyping techniques to accelerate software systems development.

6b) A product requirements document (PRD) is a document containing all the requirements to a certain product. It is written to allow people to understand what a product should do. A PRD should, however, generally avoid anticipating or defining how the product will do it in order to later allow interface designers and engineers to use their expertise to provide the optimal solution to the requirements.

PRDs are most frequently written for softwareproducts, but can be used for any type of product and also for services. Typically, a PRD is created from a user's point-of-view by a user/client or a company's marketing department (in the latter case it may also be called Marketing Requirements Document(MRD)). The requirements are then analyzedby a (potential) maker/supplier from a more technical point of view, broken down and detailed in a Functional Specification(sometimes also called Technical Requirements Document).

7a)Requirements have to be specified using some specification language. Though formal notations exist for specifying specific properties of the system, natural languages are now most often used for specifying requirements. When formal languages are employed, they are often used to specify particular properties or for specific parts of the system, as part of the overall SRS.

All the requirements for a system, stated using a formal notation or natural language, have to be included in a document that is clear and concise. For this, it is necessary to properly organize the requirements document. Here we discuss the organization based on the IEEE guide to software requirementsspecifications.

The IEEE standards recognize the fact that different projects may require their requirements to be organized differently, that is, there is no one method that is suitable for all projects. It provides different ways of structuring the SRS. The first two sections of the SRS are the same in all of them. The general structure of an SRS is given in the figure below

7b)

Clear requirements help development teams create the right product. And a software requirements specification (SRS) helps you lay the groundwork for product development.

We'll define what this is, when you'd use one, and five steps to writing an SRS Document.

At a glance, this is how to write a requirements document:

a. Make an outline.

b. Define the purpose of your product.

c. Describe what you're building.

d. Detail the requirements.

e. Get it approved.

