
NAME: ADETORO MAYOWA SOLA

MAT NO: 18/ENG04/005

DEPARTMENT: ELECTRICAL/ELECTRONICS ENGINEERING

COURSE: STRUCTURAL PROGRAMMING

PLAN

The idea here is to develop software that would help detect, and display the number of infected
persons, rate of infection spread, store the information so that it is available at the request of a
client on the designated website. The website would likely be used for epidemiological research. So
it may need an idea of geographical location of the populations as well.

Detecting if a person is infected is not practical as it would require the same thing to be done for an
entire population. It is more economic to make mathematical model that can predict the infected
people with a significant accuracy (gives and take 5%) and determine the rate of spread of the
disease by comparing with numbers of previous observations.

Since the application would store large volumes of data over time, it should use a database to
organize the data. The database would get large, such information would be costly if lost, so it must
be backed up. The new entries are also stored in the second database. Normally, the requested data
is read from the primary database but in the event that the first database is compromised, the data
can be read from the second database.

It is unnecessary to create another website for the application, a new webpage within the company’s
website can be used for making requests and receiving data. Data from the database can then be
passed through the existing server, shaving costs of re-topologizing.

ANALYSIS

The web application would require a statistical model, that estimates the number of infected people
and the approximate rate of virus spread using data collected from the population over regular
intervals. The data calculated may also have additional features as desired in future updates.

There would also need to be a database to organize and store the results calculated from the model.
The results are organized according to numbered intervals of calculations, which correspond to date.
The results are then accessible to the clients through the server.

The web application would then allow clients to send requests for the information to the server,
which has direct access to the database. It would also need security to prevent hacking.

DESIGN

The web application does not need direct access to the model software; it needs access to the
database only. Thus, the model can be built completely independent of the website. However, the
model still needs access to the internet to obtain data for the calculations.

The server would therefore have access to the web application, the model and the database.

IMPLEMENTATION

The web application itself would be programmed using java, which is an efficient program for web

Development. On the webpage would be a request button, which may be clicked after setting some
parameters regarding with data set the client desires. Once clicked, the webpage relays the request
to the server, which then returns the request to the web application base. The data is then retrieved

From the primary database. If the primary database is corrupted or otherwise unavailable, it
retrieves from the back-up database. Once the data is retrieved, it is sent to the server, which sends
it back to the client computer to be displayed on the screen as a table. The application does not have
access to the model: it is not required, yet it may compromise the security of the model.

The database are simple comma delimited flies (.csv) and do not require much space on their own.
The CSV files would contain information on the total number of infected persons, rate of disease
spread and other related fields. It is accessible to the application as a read-only file. The model can
read from the files and write to them.

The statistical model would be written using python because python has a powerful statistics library
and a notable mathematical library, Its operations may be run in parallel to the web application.
Over a regular interval, which can be adjusted depending on processing power and needs, the model
collects data from the internet through the server. Then the model begins the calculations on the
data and returns an information set containing all the necessary fields, the information is then
written to both the primary database and the back-up database.

Testing

There are various crucial parts of the application that are prone to errors. The testing process would
begin with the model: we would have to thoroughly test the model by comparing the results with
existing models of the spread of epidemics and then compare it with the observed results in reality.
The storage of the results would also be checked to ensure that the data values are stored correctly.
The rest would would mostly be error checks to ensure that the application does what it is meant to
do, without errors.

Maintenance

The databases and server would be under stress from frequent use, they would need to frequently
be maintained to prevent sudden crashes. The security systems would need to frequently be
updated to protect the servers and the model from malware attacks.

Even though the COVID-19 pandemic would soon end, the database will still be important for
research into the spread of the disease, perhaps in preparation for another potential future
outbreak, to know what measures would be required for limiting its spread. Thus, in future tweaks,
the model may not be needed and would soon be removed from the system, leaving a web
application that sends requests for data from the database.

Software features.

● Patient history stores information about existing problems, allergies, medications
● Patient scheduling allows medical providers to easily schedule patients, register them, and

choose a reason for their visit.
● E-prescribing allows medical providers to send prescriptions to pharmacies electronically.

Feedback allows patients to leave questions about the medicines they take and learn about possible
side effects and alternative medications.

● Two-way messaging interface.
● Access to healthcare data.

Hardware features

● Opentrons open source lab automation platform is comprised of a suite of open source
hardware, verified labware, consumables, reagents, and workstations. Product can help
dramatically scale-up COVID-19 testing with systems that can automate up to 2,400 tests per
day within days of an order being placed.

● The pandemic ventilator
● The masks
● Hands-free door openers.

Algorithm

● Input name of patient, A
● Input address of patient, B
● Input blood group of patients, C
● Input temperature, D
● Display/print symptoms suspected
● If number of selected < that of a COVID patient terminate/end

Else
Display /print wear face mask.

● Read if mask is worn properly (via sensors)
● If worn properly

Proceed to count 10 seconds.
Else
Print wear mask properly

● If D is greater than 29 C
While symptoms true
Check if patient can hold breath for more than 10 seconds
Print (tests negative for COVID-19)

● Else
Print (tests positive for COVID-19, call for assistance)

● Else
Print (report to the nearest health facility for medications)

 TOP DOWN

FLOWCHART

