Name : AMAO MUHAMMED OLAMIDE
Matric Number: 17/SCI01/015
Course Code: CSC 312
Question
With the aid of a diagram, describe how a C++ code can be converter to Machine Language code.
Answers
 Programming Process
Computers do not understand human languages. In fact, at the lowest level, computers only understand sequences of numbers that represent operational codes (op codes for short). On the other hand, it would be very difficult for humans to write programs in terms of op codes. Therefore, programming languages were invented to make it easier for humans to write computer programs.
Programming languages are for humans to read and understand. The program (source code) must be translated into machine language so that the computer can execute the program (as the computer only understands machine language). The way that this translation occurs depends on whether the programming language is a compiled language or an interpreted language.
 C++ code to machine code
The following illustrates the programming process for a compiled C++ language.The first 3 phases are collectively called the Analysis Phase, while the last 3 phases are called the Synthesis Phase. These phases are illustrated in the figure below.

[image: image1.jpg]Input
Source Code

ANALYSIS

SYNTHESIS <

Lexical Analyzer = St of Tokens

*,_[—A

Y,
Syntax Analyzer P et Syt Tree

A 7 S

| pe Tree
Semantic Analyzer | —> Parse Tree

Intermediate Code Generator | —> Intermediate Code

i To——
e R,
ptimizer | 5 Optimized Code

Aem— R,

Target Code

Target Code Generator |—
Output

Take note of the output of each of the phases. Also observe that the output of a phase serves as input to the succeeding phase. So let’s begin with the first one

Lexical Analysis

This is the first phase of the compilation process and is handled by the lexical analyzer which is also called the Scanner. In this phase the input C++ source code is scanned and separated into lexical units called tokens. The lexical analyses reads the input code character-by-character.

The Symbol table is generated in this phase and populated with tokens generated. A symbol table is typically a data structure that holds a record for each identifier in the source code.

The output of this phase is Stream of Tokens

 Syntax Analysis

This phase is handled by the syntax analyser. The stream of tokens generated in the lexical analysis phase is analyzed further to ensure that the input code follows the syntax of the particular language.

Syntax errors are detected in this phase.

The output of this phase includes abstract syntax trees

 Semantic Analysis

Semantic analysis is handled by the Semantic Analyses and has to do with ensuring that the source code follows standard semantic rules.

Type Checking is taken care of in this phase. This ensures that the variables are assigned values according to their declaration.

So if a variable have been declared as integer and then assigned a float, the error is trapped by the Semantic Analyzer.

This phase also identifies chunks of code such as operands and operators of statements in the input code.

The output of this phase includes the Parse Tree

 Intermediate Code Generation

Intermediate code refers to a code that is somehow between the source code and the target code, an intermediate representation of the input source program. One attribute of an Intermediate Code is ease of translation to target program.

An example would be a C++ programs compiled into C++ Bytecodes (.class files) for the C Virtual Machine.

One form of intermediate code is the “Three-Address-Code” which resembles an assembly language.

The final target code is generated from the intermediate code.

 Code Optimization

In Code Optimization, the code is optimized to remove redundant codes and the optimize for efficient memory management as well as improve the speed of execution. The intermediate code ensures that a target code can be generated for any machine enabling portability across different platforms.

Output of this phase is the Optimized Code.

Target Code Generation

Here the target code is generated for the particular platform. Machine instruction are generated from the optimized intermediate code. Assignment of variables and registers is handled here.The output of this phase is the target code.

