NAME: JODA PRECIOUS OLUWAMAYOWA

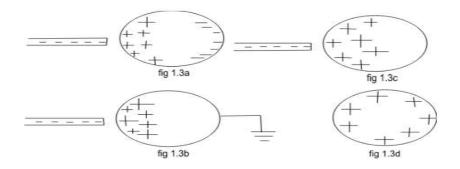
DEPARTMENT: DENTISTRY

COURSE CODE: PHY 102

MATRIC NUMBER: 19/MHS09/012

COVID-19 HOLIDAY ASSIGNMENT

SECTION A


1. a. Explain with the aid of a diagram how you can produce a negatively charged sphere by method of induction.

Charging by Induction:

Electric charges can be obtained on an object without touching it, by a process called electrostatic induction.

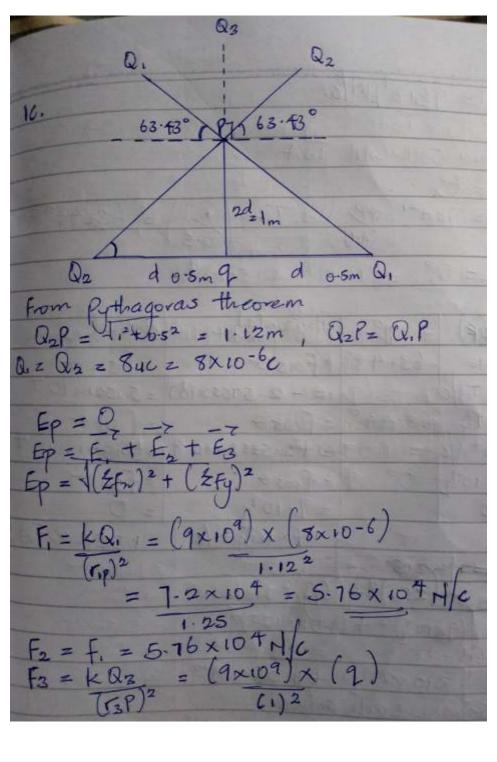
Consider a negatively charged rubber rod brought near a neutral (uncharged) conducting sphere that is insulated so that there is no conducting path to ground as shown below. The repulsive force between the electrons in the rod and those in the sphere causes a redistribution of charges on the sphere so that some electrons move to the side of the sphere farthest away from the rod (fig. 1.3a). The region of the sphere nearest the negatively charged rod has an excess of positive charge because of the migration of electrons away from this location. If a grounded conducting wire is then connected to the sphere, as in (fig. 1.3b), some of the electrons leave the sphere and travel to the earth. If the wire to ground is then removed (fig 1.3c), the conducting sphere is left with an excess of induced positive charge.

Finally, when the rubber rod is removed from the vicinity of the sphere (fig. 1.3d), the induced positive charge remains on the ungrounded sphere and becomes uniformly distributed over the surface of the sphere.

1b.

16.
$$q_1 + q_2 = 5 \times 10^{-5}c$$
 — (1)

 $F = 1.0H$; $r = 2.0m$
 $Pecaul$
 $F = kq_1q_2$ — (2)


 $q_1 = (5 \times 10^{-6}) - q_2$ — (3)

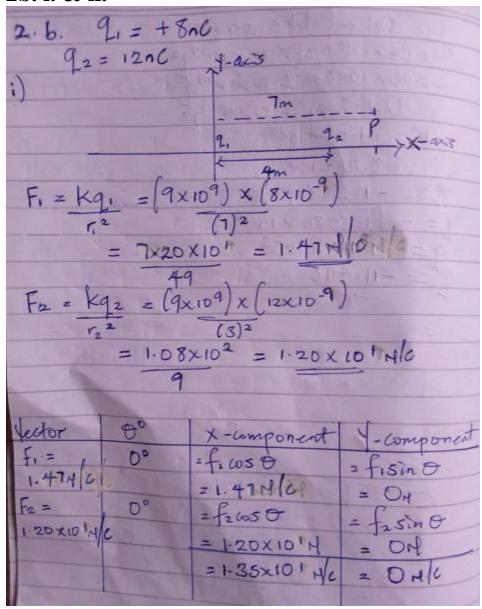
 $1 = 9 \times 10^9 (5 \times 10^6 - q_2) \times q_2$
 2^2
 $4 = 9 \times 10^9 (5 \times 10^6 q_2 - q_2^2)$
 $4 = 9 \times 10^9 (5 \times 10^6 q_2 - q_2^2)$
 $4 = 4.5 \times 10^5 q_2$ — $9 \times 10^7 q_2^2$
 $6011ect$ like terms

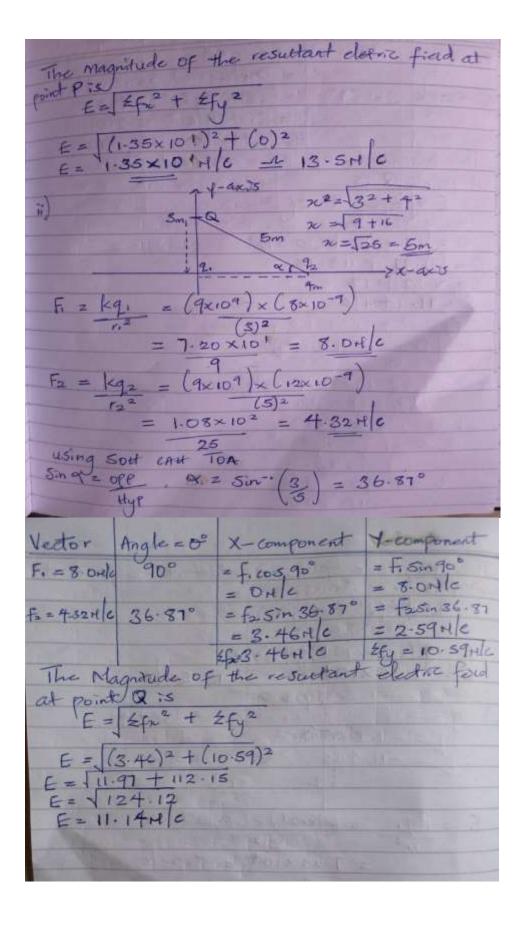
 $9 \times 10^9 q_2^2$ — $4.5 \times 10^5 q_2 + 4 = 0$
 $1 = 3.84 \times 10^{-5}$ or $1 = 1.16 \times 10^{-5}$

The Yalues of $1 = 1.16 \times 10^{-5}$
 $1 = 3.84 \times 10^{-5}$ and $1 = 1.16 \times 10^{-5}$
 $1 = 1.16 \times 10^{-5}$ and $1 = 1.16 \times 10^{-5}$

1c.

= 9×109 He		
THE PARTY OF THE P		
Using Sott CAH TOA		
9 247 -		
0, = Tan-1 (OPP) = Tan-1 (1) = 63-44°		
Yector Angle (0°)	X-component Ficoso =-2.58×10+elc	Fisin o
f. 2 5.76 63.44°	=-2.58×10 +elc	= 5-15×104HC
x104H/C F2=5.16 63.44°	E 1050	123410
- 104.00	= +2-58 × 10 17010	=5.15×109NC
F3=9×102 90°	f3 605 8	= 9×109 HC
HIC .	= 04/0	2fy=(1.03×105
		0+9x109) He
The Magnitude of the resultant electric field at point Pis		
feeta at point 1 is	Many S 1	OLX PE-
$E_{p} = \int (0)^{2} + (1.03 \times 10^{5} + 9 \times 10^{9})^{2}$		
Ep= (1.03×105+9×109q)2		
Epz Di lile de la Politica del Politica de la Politica de la Politica del Politica de la Politica del Politica de la Politica de la Politica del Politica de la Politica del Politica de la Politica del Politica de la		
0=1.03×105+9×109		
Collect like terms		
$-1.03 \times 10^{5} = 9 \times 10^{9}$		
9 = -1.03x105		
9 = 1.14 x1050		
==-11.4 µ C		
- 11 1 5 6	THE RESERVE	- 3 - 1


2a. ELECTRIC FIELD


An electric field is a region of space in which an electric charge will experience an electric force.

ELECTRIC FEILD ITENSITY

electric field strength (intensity) E, can be defined as the force per unit charge.It is measured in Newton per coulomb.

2b. i. & ii.

SECTION B

4a. Magnetic flux

The magnetic flux is defined as the strength of magnetic field represented by lines of force. It is usually represented by the symbol ϕ . It is expressed mathematically as;

$$\phi = B.d A$$

$$\phi = BA\cos 0^{0}$$

4b.i.

4b. Mass,
$$M = 9.4 \times 10^{-31} \text{ kg}$$

radius, $r = 1.4 \times 10^{-3} \text{ m}$

Magnetic induction, $B = 3.5 \times 10^{-1} \text{ tesla}$

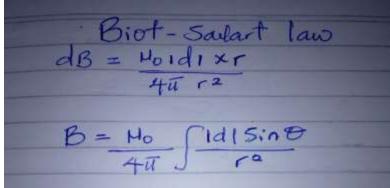
Cycloton frequency, $iD = ?$

that ge of an electron, $Q = -1.60 \times 10^{-19}$
 $W = V$
 $V = 9B$
 $V = (1.6 \times 10^{-19} \text{c}) \times (3.5 \times 10^{-1} \text{c}) \times (1.4 \times 10^{-3} \text{m})$
 $V = 1.84 \times 10^{-21} = 8.61 \times 10^{3} \text{m/s}$
 $V = 1.84 \times 10^{-31}$
 $V = 1.84 \times 10^{-31}$

ii. we were given the following parameters:

mass of the electron, m_e = 9.11×10^-31 radius of circular path, r = 1.4×10^-7 magnetic field, B= 3.5×10^-1

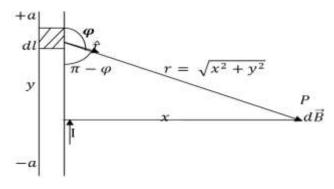
The answer above means that the particle (electron) completes 6.15×10^{10} radian in 1 second.


The Cyclotron frequency is also reffered to as the angular speed. It is called the cyclotron frequency because the charged particle circulates at this angular frequency or speed in the type of accelerator called cyclotron.

The cyclotron frequency is the ratio between the velocity(v) of the particle and the radius(r) of the circular path. In order to get the cyclotron frequency I had to solve for the velocity of the electron, from the known values of the $mass(m_e)$, magnetic induction(B) and the charge of the electron(q), using the equation;

 $V = qBr/m_e$ and then inputing the value of V into the equation; w = v/r, where w is the cyclotron frequency.

5a. BIOT-SAVART LAW


It states that the magnitude of the magnetic field created at a point by the current is directly proportional to the current (I) and the magnitude of the length element (dI) and inversely proportional to the square of the distance (r) between dI and the point(P).

Where u_0 is a constant, permeability of free space.

5b. Magnetic Field of a Straight Current Carrying Conductor

A section of a Straight Current Carrying Conductor

Applying the Biot-Savart law, we find the magnitude of the field dB

$$B = \frac{\mu_o I}{4\pi} \int_a^a \frac{dl \sin \varphi}{r^2}$$

$$sin(\pi - \phi) = sin\theta$$

$$\therefore_B = \frac{\mu_o I}{4\pi} \int_{-a}^{a} \frac{dl sin(\pi - \Phi)}{r^2}$$

From diagram, r2 =x2 +y2 (Pythagoras theorem)

$$B = \frac{\mu_0 I}{4\pi} \int_{-a}^{a} \frac{dI \sin(\pi - \phi)}{x^2 + y^2} \dots (*)$$

But
$$\sin(\pi - \Phi) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{(x^2 + y^2)^{1/2}} \dots (**)$$

Substituting (* *) into (*), we have

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \int_{-a}^{a} dl \frac{x}{(x^2 + y^2)(x^2 + y^2)^{1/2}}$$

$$B = \frac{\mu_0 I}{4\pi} \int_{-a}^{a} dl \frac{x}{(x^2 + y^2)^{3/2}}$$

Recall dl =dy

$$\begin{split} B &= \frac{\mu_o I}{4\pi} \int_{-a}^a \frac{x}{(x^2 + y^2)^{3/2}} dy \\ B &= \frac{\mu_o I x}{4\pi} \int_{-a}^a \frac{1}{(x^2 + y^2)^{3/2}} dy \quad ... \quad (***) \end{split}$$

Using special integrals

$$\int \frac{dy}{(x^2 + y^2)^{3/2}} = \frac{1}{x^2(x^2 + y^2)^{1/2}}$$

Equation (* * *) therefore becomes

$$B = \frac{\mu_0 I x}{4\pi} \left[\frac{y}{x^2 (x^2 + y^2)^{1/2}} \right]_{a}^{a}$$

$$B = \frac{\mu_0 I x}{4\pi} \left(\frac{2a}{x^2 (x^2 + a^2)^{1/2}} \right)$$
$$B = \frac{\mu_0 I}{4\pi x} \left(\frac{2a}{(x^2 + a^2)^{1/2}} \right)$$

When the length 2a of the conductor is very great in comparison to its distance x from point P, we consider it infinitely long. That is, when a is much largerthan x,

$$(\mathbf{x}^2 + \mathbf{a}^2)^{1/2} \cong \mathbf{a}$$
, as $\mathbf{a'n} \propto \mathbf{B} = \frac{\mu_0 \mathbf{I}}{2\pi \mathbf{x}}$

In a physical situation, we have axial symmetry about the y- axis. Thus, at all points in a circle of radius r, around the conductor, the magnitude of B is

$$B = \frac{\mu_0 I}{2\pi r} \qquad ... \qquad (\#)$$

Equation (#) defines the magnitude of the magnetic field of flux density B near a long, straight current carrying conductor.