NAME: OTUBELA PRINCESS OLUWAPAMILERIN COURSE CODE: PHY 102
 DEPARTMENT : MEDICINE AND SURGERY
 MATRIC NO: 19/MHS01/366
 COVID-19 HOLIDAY ASSIGNMENT

Instruction: Answer Four (4) Questions in All - two from Section A and two from section B.

SECTION A

1(a) Explain with the aid of a diagram how you can produce a negatively charged sphere by method of induction.

CHARGING BY INDUCTION
This is a method of producing electrical charges. It does not require contact with the object it is being charged with. This method of producing charges would produce a charged sphere with an opposite charge to the object it was charged with. The sphere to be charged is insulated so there would be no conducting path to the ground. Since we are producing a negatively charged sphere, a positively charged rod would be brought close to the sphere but not in contact with it. A repulsive force between the proton in the rod and that in the sphere causes a redistribution of charges on the sphere some protons move to the part of the sphere farthest from the rod. This causes the region of the sphere closer to the rod have an excess negative charge (electron). A conducting wire is connected to the sphere causing the protons to leave to the ground. If the wire is removed, the sphere is left with excess electrons causing the sphere to be negatively charged. The rubber rod is taken away from the vicinity of the sphere and the electrons becomes uniformly distributed on the surface of the sphere.

(b) Each of two small spheres is charged positively, the combined charge being $5.0 \times 10^{\wedge}-5 \mathrm{C}$. If each sphere is repelled from the other by a force of 1.0 N when the spheres are 2.0 m apart, calculate the charge on each sphere.

$$
19 / \mathrm{MHSOl} / 366
$$

 let the charge s on the sphere be
p and $q \mathbb{C}$
Using Quadrabe furmular

$$
\frac{-b^{2} \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{equation*}
p+q=5.0 \times 10^{-5} \mathrm{C} \tag{1}
\end{equation*}
$$

$$
F=1.0 \mathrm{~N}, d=2.0 \mathrm{~m}
$$

$$
q=\frac{\left(-5 \cdot 0 \times 10^{-5}\right) \pm \sqrt{\left(-5 \cdot 0 \times 10^{-5}\right)^{2}-4(1)\left(0 . \times 4+10^{5}\right)}}{2(1)}
$$

Recall,
from - (11)

$$
p=\frac{0 \cdot 1+1+\times 10^{-9}}{q}
$$

$$
q=3.86 \times 10^{-5} \mathrm{C} \text { or } 1.14 \times 10^{-5} \mathrm{C}
$$

Sub in - (1).

$$
\frac{\text { Sub in }}{0 \cdot 1+1+10^{-9}} q=q=5 \cdot 0 \times 10^{-5}
$$

$$
\text { Recall } p+q=5.0 \times 10^{-5}
$$

$$
p=5.0 \times 10^{-5}-\left(3.86 \times 10^{-5}\right)
$$

muchiply each tem by q

$$
=1.14 \times 10^{-5} \mathrm{C}
$$

OR

$$
\begin{array}{rl}
0.1+11 \times 10^{-9}+q^{2}=5.0 \times 10^{-5} q & P=5.0 \times 10^{-5}-\left(1.14 \times 10^{-5}\right) \\
& =3.86 \times 10^{-5} \mathrm{C}
\end{array}
$$

$$
q^{2}-\left(5 \cdot 0 \times 10^{-5}\right) q+\left(\cdot .14 \times 10^{-9}\right)=0
$$

$$
=3.86 \times 10^{-5} \mathrm{C}
$$

wimpare with

$$
9 x^{2}+6 x+c=0
$$

$$
\begin{aligned}
& f=\frac{k q_{1} q_{2}}{r^{2}} \\
& \text { 1.ON }=\frac{q \times 10^{9} \times p \times q}{2^{2}} \\
& 1.0 \times H=9 \times 10^{9} \times p q \text {. } \\
& p q=\frac{4+0}{q \times 10^{9}} \quad q=\frac{\left(5.0 \times 10^{-5}\right)+2.72 \times 10^{-5}}{2} \text { or(5.0x10-5)} \frac{2}{2} \\
& p q=0 \cdot 1+14 \times 10^{-9} \text { - (11) } q=\frac{7 \cdot 72 \times 10^{-5}}{2} \text { or } \frac{2 \cdot 28 \times 10^{-5}}{2} \\
& q=\frac{\left(5 \cdot 0 \times 10^{-5}\right) \pm \sqrt{\left(25 \times 10^{-10}\right)-\left(1.76 \times 10^{-9}\right)}}{2} \\
& q=\frac{\left(5.0 \times 10^{-5} \pm \pm \sqrt{7 \cdot 1+10^{-10}}\right.}{2}
\end{aligned}
$$

(c) Three charges were positioned as shown in the figure (I) below. If $\mathrm{Q} 1=\mathrm{Q} 2=8 \mathrm{uC}$ and, $\mathrm{d}=0.5 \mathrm{~m}$, determine if the value of q if the electric field at p is zero.

2. (a) Distinguish between the terms: electric field and electric field intensity. Electric field is a region of space where an electric charge experiences an electrical force WHILE electric field intensity also know as electric field strength is the force per unit charge found in an electric field.
(b) A positive charge $\mathrm{Q} 1=8 \mathrm{uC}$ is at the origin, and a second positive charge Q2=-12uC is on the axis at $x=4 m$. Find
(i) the net electric field at a point P on the axis at $\mathrm{x}=-7 \mathrm{~m}$
(ii) the electric field at a point Q on the y -axis at $\mathrm{y}=3 \mathrm{~m}$ due to the charges.

SECTION B

4 (a) What is Magnetic flux?
Magnetic flux is the strength of a magnetic field which is indicated by magnetic lines of force. It is represented by the symbol \varnothing.
(b) An electron with a rest mass of $9.11 \times 10-31 \mathrm{~kg}$ moves in a circular orbit of radius $1.4 \times 10^{\wedge}-7 \mathrm{~m}$ in a uniform magnetic field of $3.5 \times 10-1$ Weber/meter square, perpendicular to the speed with which electron moves. Find the cyclotron frequency of the moving electron

(c) Discuss your answer in 4b above.

The cyclotron frequency has the same value as the angular speed. This is because the electron is rotating in a type of accelerator called cyclotron.

Application Example

(1) A proton is moving in a circular orbit of 5. (a) State the Biot-Savart Law.

The Biot-Savart Law is an equation that describes the magnetic field created by a currentcarrying wire, and allows you to calculate its strength at various points. The mathematical equation of biot savant law is given as:

$$
\begin{aligned}
& \mathrm{dB}=\underline{U_{0}} \underline{|d| \dot{x} \times \check{\mathrm{r}}} \\
& 4 \not \mathrm{r}^{2} \\
& \mathrm{Uo}=4 ¥ \times 10^{\wedge}-7 \mathrm{~T} . \mathrm{m} / \mathrm{A}
\end{aligned}
$$

(b) Using the Biot-Savart Law, show that the magnitude of the magnetic field of a straight current-carrying conductor is given as

$$
B=\underline{U \emptyset \mid}
$$

$19 / \mathrm{MHEOL} / 366$

a stechin of as straight Current Carrying conductor. FiGure (I)
Applying Biot-Savart law;

$$
d \vec{B}=\frac{u_{0} I \vec{d} \times \hat{r}}{4 \pi r^{2}}
$$

Integrate

$$
\vec{B}^{\text {grate }}=\frac{u_{0} \tau}{4 \pi} \int_{-a}^{a} \frac{d(\sin \theta}{r^{2}}
$$

$$
\begin{aligned}
& \sin (\pi-\varphi)=\sin \theta \\
& \therefore B=\frac{H_{0} I}{1+\pi} \int_{-a}^{a} d(\sin (\pi-\varphi) \\
& r^{2} .
\end{aligned}
$$

Foo Figure (I) above, apply Pythagoras the rem

$$
r^{2}=x^{2}+y^{2}
$$

$$
B=\frac{\mu_{0} I}{1+\pi} \int_{-a}^{a} \frac{d(\sin (\pi-e)}{x^{2}+y^{2}}-0 \quad B=\frac{\mu_{0} I}{1+\pi x}\left(\frac{2 a}{\left(x^{2}+a^{2}\right)^{1 / 2}}\right) \text {. }
$$

But $\sin (\pi-c)=\frac{x}{\sqrt{x^{2}+y^{2}}}$-(111. When the length of the Conductor, $2 a$ is very great in comparison to its de stance x from point p
Sub - (1) in (II)

$$
\begin{aligned}
& B=\frac{U_{0} I}{1+\pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& B=\frac{\mu_{0} I}{1+\pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

But $d L=d y$.

$$
\begin{align*}
& B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y . \\
& B=\frac{\mu_{0} I x}{4 \pi} \int_{-a}^{a} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y- \tag{III}
\end{align*}
$$

Using special Integrals.

$$
\int \frac{d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{x^{2}} \frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}
$$

Simplyfying - (III)

$$
B=\frac{\mu_{0} I_{x}}{4 \pi}\left[\frac{y}{x^{2}\left(x^{2}+y^{2}\right)^{1 / 2}}\right]_{-a}^{a}
$$

$$
B=\frac{\mu_{0} T_{x}}{1+\pi}\left(\frac{2 a}{x^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}\right)
$$

$$
\begin{aligned}
& \therefore\left(x^{2}+a^{2}\right)^{1 / 2} \cong a, \text { as } a \rightarrow \infty \\
& B=\mu_{0} I \\
&
\end{aligned}
$$

