NAME: AKINBILE GRACE OLUWASEUN MATRIC NUMBER: 18/MHS02/029 DEPARTMENT: NURSING, 200LVL (C.O) COURSE: PHY 102 (PHYSICS)

ANSWERS

1a)

	AKINBILE GRACE 0. 18/1944502/029
ià - stata	+ (=++) grass + (=++) reported + (=++) r
	+ + + + + + + + + + + + + + + + + + +

A neutral conducting sphere is at rest on top an insulating stand. A positively charged tube is brought near (without touching) to the neutral sphere. The presence of the positively charged tube forces electron movement from right to left side of the sphere. This movement of electrons is merely a reaction to the presence of positive charge. Once touched by the ground, the electron leaves the sphere. When the tube is moved away, there is an overall negative charge left on the sphere.

1b)

.

	AKIMBILE GRACE D. LECATHEOLOZY
16.	Let the values of the individual charges be quand q2
	The condition on the combined charge of
	the sphere is given as;
	91+92=5-0×10-5C0
	Both charges are positive because their
	sum is positive and they repel each other,
	thus i 19,1=9, and 1921 = 92-
	$2lsing F = \frac{kq_1q_2}{r_2} = 1.0 \text{ M}$
	$\mathcal{T}_1\mathcal{T}_2 = (1-0N) \frac{1}{16}$
	= (1.0N) (2.0m) 2 × 8-99× 109 ~/m2/c2
	7,92= 4-49×10-10C=
	- From eqn ()
	$T_2 = 5 - 0 \times 10^{-5} - 7$
	Substituting for q2 in eqn @
	VILS-0×10-5-91) = 4-449×10-10
	$5 - 0 \times 10^{-1} q_1 - q_1 = 4 - 4 + 9 \times 10^{-10}$
	91 - (5-0×10-5)91 + 4-449×10-10=0
	Using quadratic permular 7. = - (-5.0×105) = - 4(4-447×10)
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	71 = - (-5.0×105) = 1 (5×10 -) -4(++1210)

AKINELLE GRACE O. 18 Matts 02/0 q1 = 5×10-5 ± 12-684×10-5 16 conta 2 × 10-BC 9. = 3-842 Substituting for q. in eqn(3) P2 = 5.0 × 10-5 - 3-842 × 10-5 P2 = 1-16 × 10-5 C -Tlence, the charge on each sphere and 3-B+2 x10-5c and 1-16 × 10-5c. 10 15/2~ 15/27 2d 63-43 d 205m 263-43° 22/ 28, deo.sm alsing pythagoras there mype = Opp = + of Q. = Q2 = Suc $YP^{2} = OPP^{2} + ad$ = $1^{2m} + 0 - 5^{2m}$ $MP = \sqrt{3} / 4$ = $\sqrt{5} / 2m$. d=20-5m Z = 1<q. $\frac{\mathcal{E}^2}{(\mathbf{4}^5/2)^2}$ 72000 ×4 = 57600 = 5.76×10t

	AKINBILE GRACE 0- 18/MANSOZ6029
ic. cont.d.	Angle: Sott, Sind = OPP = - 1 = - 0-89+
<u></u>	0 = SINCO-8944) = 63-43°.
	= 25763-95
->	ZIV = 5-76 × 104 SM 63-43 = 51516-78
->	$E_{22} = -25763.95, E_{2} = 51516 - 78$ $E_{22} = 25763.95 + (-25763.95) = 0$ $E_{3}^{2} = E_{1} + E_{2} + E_{3} = 0$
	@= 51516-78+ 51516-78 + Eq.P
	0 = 1-03034 × 105 - + EqP EqP = (-03034 × 105
	E 2 Kg, /-2 - (-03034 × 105 = 9×109×98
	$-1.03034 \times 10^{5} = 9 \times 1097^{1}$ $7p = -1.03034 \times 10^{5} = -1.1448 \times 10^{-5}$ 9×10^{9}
	$947 = -1 - 1 \times 10^{-5}$ $947 = -11 \times 10^{-6}$
	$-i-q_P = -ii M c_{ii}$

MAINBILE GRACE D. 18 (not so 2 (0 29 30 r.) Volume charge density, PEda > da = P-all at) Surface charge density, of 2 da -> da = 201A 217.) Linear charge density, 7 = de -> d& = > dL e = 1 e = 2 de = 1 de = -D $4\pi e_0 r^2 = 2$ de = 1 de = -DUsing the sperposition principle, the total electric field, E is the vector sum (integral) of these inpinitesimal contributions-Z= 1 Sola 47.ED 52 - 2 where r is the distance from dato point P. The potential difference between two points is one volt if the work done in taking one coulomb of positive dange from one point to the other is one joule - marken at cally, w= qv or v= 340

18 /10001502 6029 AKIMBILE GRACE O The electric potential difference between two points in an electric field can be depined ast he 32 work per sense charge againsts electrical forces when a charge is transported from one, point to the other - It is measured in volt cr) or Joules per coldomb (3/c) and of a scalar quantity-Suppose a test charge, 70 is moved from point & to point B along on arbitrary parth inside an electric field E- The electric field exerts a porcert = got on the charge. movie the charge from A to B at a constant vielouity, on esciencial force of T = -706 milist act on the charge Therefore, elemental orige done, due is given ast due = T.dl = -10F = - TO E - - (2) bout Substituting eqn @ in @ yields/ due = -qotde --- @ Then total work done is man ca -> Blag = - To fred (- -)

Thom the depinition of potential dufference, of follows that VB - VA = WICA -> B) Ag E 20 Protong eqn @ in @ yields ; VB - VA = - SBEde - 6

3)

)	A UNRILE ORACE D. 18/194502/029
30.25	ARIAD
	$E = \frac{KR}{C(2 \times 10^{2})(10 \times 10^{-6})} = -90.000$
	$E_2 = 1482 = (9 \times 10^{-9})(-9 \times 10^{-6}) = -1800$ H = r
	$= \frac{90,000}{14} + \left(\frac{-18,000}{14}\right)$
	$E_{,}(2000) + -(-(8,000)) = \sqrt{(4)}$
	$260,000 - 90,000 - 18,000 - 2 \\ (4) - \\ 360,000 - 90,000 18,000 2 \\ (4) - \\ 360,000 - 90,000 18,000 2 \\ (4) - \\ (4$
	N = 360,000 - 105,000 r B = 360,000 - 105,000 r
	= 360,000 = 360,000 $= 3-33$
	1 = 0 at $r = 3 - 33 m // .$

4a) Magnetic flux is defined as the number of magnetic field lines passing through a given closed surface (It gives the measurement of the total magnetic field that passes through a given area). Its S.I unit is weber (Wb).

4b)	
	ARIMBILE GRACE D. 18/1914502/029,
46	m = 9 × 10 ⁻³ leg r = 1.4 × 10 ⁻⁷ m B = 3.5 × 10 ⁻¹ wh/m ² Cyclothon frequency = angular speed w = <u>v</u> = <u>9B</u> r
	$w = 1 \cdot 6 \times 10^{-19} \times 3 \cdot 5 \times 10^{-1}$ $f \times 10^{-31}$ $w = 622 - 27^{-1}$
Ac.	to angular speed, the cyclothan frequency is equal to angular speed, the cyclothan prequency is equal to 622,227 having a unit of i/T which is equal to the unit of prequency.

Magnetic flux= magnetic field *area*angle btw the planar area and magnetic flux

5a) The Biot-Savart law is an equation that describes the magnetic field created by a current carrying wire and allows you to calculate its strength at various points. It tells the magnetic field toward the magnitude, length, direction as well as the closeness of the electric current.

	ARMBILE GRACE D. 18/1014502/029
56	Magnetic field of a straight current-
	carning conductor.
	Applying the Birt-Savant Law, the
	magnitude of the field db
	B= Mot Sa dusing 47 S-a F2
	$s_{i}m(\pi - \varphi) = s_{i}m\varphi$
	$\frac{1}{2} - B = \frac{1}{2} \frac{1}{2$
	- Theorem 1 Sc Add
	$B = \underbrace{\mu \sigma T}_{4\pi} \int_{-\alpha}^{\alpha} \frac{d c \sin (\pi - \varphi)}{\sigma c^2 + c^2} (\varphi) \begin{bmatrix} T \\ -\alpha \end{bmatrix}$
	But sin $(\pi - q) = 3c$ = $(\pi - q^2)^{1/2}$ = $(\pi - q^2)^{1/2}$ = (2)
	By substituting Ced into Cid, we have;
	$B = \frac{110T}{4\pi} \int_{-a}^{a} dc \frac{3c}{(3c^{2}+y^{2})(x^{2}+y^{2})^{1/2}}$
	$B = \frac{n \sigma T}{4\pi} \int_{-a}^{a} d(\frac{n}{2\pi^2 + \eta^2})^{3/2}$

AKINBILE GRACE O. 18/171502/029 Recall de = dy $B = \frac{101}{4\pi} \int_{-\pi}^{\pi} \frac{2c}{-2c^2 + y^2} \int_{-\pi}^{\pi} dy$ Bb. cont.d $\frac{2}{4\pi}: B = \frac{2}{4\pi} \int_{-a}^{a} \frac{1}{2} \int_{-a}^$ B = 10 Inc I J 47 [De 2 (22+42) 1/2]-a $B = \frac{10}{4\pi} \left(\frac{2q}{7c^2 (2x^2 + q^2)^{1/2}} \right)$ $B = \frac{10 T}{4\pi 2c} \left(\frac{2q}{(2c^2 + a^2)^{\frac{1}{2}}} \right)$ when the length, #2a of the conductor is very great in comparison to its distance & from Point P, the considered infinitely long i-ender a is much larger than 2, Coct + a > 1/2 = a, as a -> 00

5b)

AKINIBILE GRACE D. (\$/nath 5 02/029 No shcont d_- - B = eloI ZAX In physics, ascial symmetry is about the y-ascis- Thus, at all points in a circle of radius, r, around the conductor, The magnitude of FB its ; $B = \frac{loI}{2\pi r} - - - (5)$ Ran (5) defines the magnitude of the magnetic field of pluse density B near a long, stranght, company conductor.