2) $x=-3 t^{2} \quad y=t^{2} \quad z=4 t^{3}$
difentiate $\left(-3 t, t^{3}, 4 t^{3}\right)$

$$
r=\left(-3,3 t^{2}, 12 t^{2}\right)
$$

Divide the Vector by its Magnitude

$$
m=\sqrt{(-3)+(3 t)^{2}+(2 t)^{2}}=\sqrt{9+6 t^{2}}+2 y^{2}
$$

No. $2^{d t}=\frac{1}{\sqrt{9+6 t+2 y t^{2}}}\left(-3,3 t^{2}, 12 t^{2}\right)$ add to 1 to the equation

$$
\begin{aligned}
& T(1)=\frac{1}{\sqrt{9+6+24}}(-3,3,12) \\
&\left(\frac{-3}{\sqrt{39}}, \frac{3}{\sqrt{39}}, \frac{12}{\sqrt{39}}\right)
\end{aligned}
$$

3)

$$
\begin{aligned}
& x=8 t^{2}, y=t^{2}-4 t, z=2+1 \text { ford a } \\
& \text { Velocity }=\frac{d v}{d x}=16 t i+(2 t-4)+1 k
\end{aligned}
$$

$d t / 2 t^{2}=$ Acela.atm $=16 i+2 j+0 k /, \quad$ NO. 3

Name: Effanga, Massey Efanga
19 sciol ow
1)

$$
\begin{aligned}
& \text { If } A=5 i-7 j-6 k, B=j+4 k, C=9 i-4 j+k \\
& \text { find }-8(A+B) \cdot(C-A) \\
& -8(A+B)=-8(5 i-7,-6 k)+(j+4 k) \\
& 5(5 i+0) i-(-7+1) j-(-6-4) k \\
& \begin{aligned}
& \text { No. } 1 \quad-8(5 i-6 j-2 k) \\
&=(-40 i+48 j+16 k) \\
&(c-A)=(9 i-4 j+k)+(5 i-7 j-6 k) \\
&(-9-+5)(9-5) i+(-4-7)-(1-6) \\
&(4 i+3 j+7 k)
\end{aligned} \\
& \begin{aligned}
& \text { No. } 1 \quad-8(5 i-6 j-2 k) \\
&=(-40 i+48 j+16 k) \\
&(c-A)=(9 i-4 j+k)+(5 i-7 j-6 k) \\
&(-9-+5)(9-5) i+(-4-7)-(1-6) \\
&(4 i+3 j+7 k)
\end{aligned} \\
& -8(A+B) \cdot(C-A)=\left|\begin{array}{ccc}
i & j & k \\
-40 & 45 & h \\
4 & 3 & 7
\end{array}\right| \\
& =i \begin{array}{cc}
48 & 60 \\
3 & 7
\end{array}-j\left|\begin{array}{cc}
-40 & 16 \\
4 & 7
\end{array}\right|+k\left|\begin{array}{cc}
-40 & 48 \\
4 & 3
\end{array}\right| \\
& (33 b-48) i-(-280-64) i+(-120)-192) k \\
& 288 i+344 k+312 k
\end{aligned}
$$

$$
\begin{aligned}
& A=i+2 j-4 k, B=2 i-3 j+k \quad C=4 j-3 k \text { find }(A x) \\
& \bar{A}+\bar{B})=\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & -4 \\
2 & -3 & 1
\end{array}\right|=i\left|\begin{array}{cc}
2 & -4 \\
-3 & 1
\end{array}\right|-j\left|\begin{array}{cc}
1 & -4 \\
2 & 1
\end{array}\right|+k \\
& \text { No. } 4 \\
& i=(2-12)-j(1+(-8)) \\
& =-101 \times 95+7_{K} \\
& =-10 i-9 j-7 k \\
& (\bar{A} \times \bar{B}) \times \bar{c}=\left|\begin{array}{ccc|ccc}
i & \dot{j} & k & i & j & k \\
-10 & -4 & -3 & -10 & -9 & -7 \\
1 & 4 & -7 & 1 & 4 & -3
\end{array}\right| \\
& \text { i } \left.\left|\begin{array}{cc}
-9 & -3 \\
-7 & 4
\end{array}\right|-j\left|\begin{array}{cc}
-10 & -7 \\
0 & -3
\end{array}\right|+1 \right\rvert\, \begin{array}{cc}
-10 & -9 \\
0 & 4
\end{array} \\
& i(-36-21)-j(30+(-0))+k(-40-6 \\
& 67 i-30 j-40 k \\
& R=4 \sin 3 t_{i}+4 e^{35},+7 t^{3} k \\
& \int 2=\int 4 \sin 3 t_{i}+\int 4 e^{1 t} j+\int 7 t^{3} k \text { No. } 5 \\
& \left.\int_{0}^{-4} / 3 \cos 3(t)+4 / 3 e^{36}+7 / 4\right)^{4} k{ }^{4} k
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{4}{3} \cos 3(1) i+4 / e^{3(1)} j+7 / 4 \\
& =-1.33 i+10.39 j+1.75 k
\end{aligned}
$$

when $t=0$

$$
\begin{aligned}
& -4 / 3 \cos 3(0) i+4 / e^{5(0)^{\circ}}+7 / 4 \mathrm{NO.5} \\
& =-1.33 i \\
& \therefore(-1.33 i+10.87 j+1.75 k]-[-1.33 i] \\
& =10.87 j+1.75 k
\end{aligned}
$$

