NAME: TIMIADI ESTHER PEREMOBOERE.

COLLEGE: MEDICINE AND HEALTH SCIENCES.

DEPARTMENT: NURSING.

MATRIC NO.: 19/MHS02/114.

ASSIGNMENT.

- 1. The IUPAC names are:
 - i. CH₃OCH₃ Methoxymethane.
 - ii. CH₃CH₂OCH₂CH₃ Ethoxyethane.
 - iii. (CH₃CH₂CH₂CH₂)₂O Butoxybutane.
 - iv. CH₃CH₂OCH₃ Methoxyethane.
 - v. CH₃CH₂CH₂OCH₂CH₃ Ethoxypropane.
- 2. The properties of ethers are:
 - i. An ether molecule has a net dipole moment due to the polarity of C-O bonds.
 - ii. Boiling point: The boiling point of ethers is comparable to the alkanes but much lower than that of alcohols of comparable molecular mass despite the polarity of the C-O bond. The miscibility of ethers with water resembles that of alcohols.
 - iii. Ether molecules are miscible in water. This is attributed to the fact that like alcohol, the oxygen atom of ether can also form hydrogen bonds with a water molecule.
 - iv. They are colourless, neutral liquids with a pleasant odour.
 - v. They are inert at moderate temperature which leads to their wide use as reactive media.
 - vi. They are not found commonly in nature but have linkages present in cellulose, starch and glucose.
 - vii. Their density increases with the relative molecular mass. As thus, simple ethers are less dense than water.
- 3. Two methods of preparing ethers:
 - i. <u>Controlled catalytic hydration of olefins(alkenes):</u>

2CH ₃ CH ₂ =CH ₃ + H20	\longrightarrow (CH ₃) ₂ CH-O-CH (CH ₃) ₂
(PROPENE)	(2-isopropoxypropane)

ii. <u>Partial/ Catalytic dehydration of alcohols:</u>

Using H2SO4 as the catalyst, alcohols react with water (H20) under a temperature of 140°C (if the alcohol used is in excess) to produce ethers. But, if the alcohol used is not in excess, a temperature range from 170° C -180°C

CH₃CH₂OH <u>CONC.H₂SO₄/140°C</u> CH₃CH₂OCH₃CH₂ + H₂O 4. Some of the uses of ethylene oxide are:

- i. Used as a gaseous sterilizing agent.
- ii. Used in the production or preparation of emulsifying agents.
- iii. Used as an intermediate in the hydrolytic manufacturing of ethylene glycol.