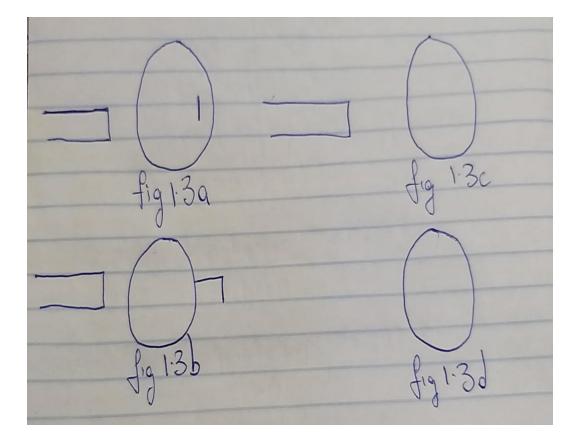
NAME: AJUONUMA-VIN STEPHANIE CHISONYELUM DEPT: ELECT ELECT ENGINEEERING MATRIC NO.:19\ENG04\003 COURSE CODE: PHY 102

COVID-19 HOLIDAY ASSINGMENT.

SECTION A

1a. Charging by Induction:


Electric charges can be obtained on an object without touching it, by a process called electrostatic induction.

Consider a positively charged rubber rod brought near a neutral (uncharged) conducting sphere that is insulated so that there is no conducting path to ground as shown below. The repulsive force between the protons in the rod and those in the sphere causes a redistribution of charges on the sphere so that some protons move to the side of the sphere farthest away from the rod (fig. 1.3a). The region of the sphere nearest the positively charged rod has an excess of negative charge because of the migration of protons away from this location. If a grounded conducting wire is then connected to the sphere, as in (fig. 1.3b), some of the protons leave the sphere and travel to the earth. If the wire to ground is then removed (fig 1.3c), the conducting sphere is left with an excess of induced negative charge.

Finally, when the rubber rod is removed from the vicinity of the sphere (fig. 1.3d), the induced negatively charge remains on the

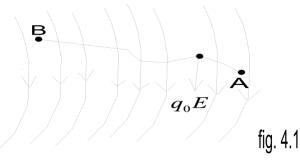
ungrounded sphere and becomes uniformly distributed over the surface of the sphere.

Diagram:

1b.

K = 9×109 $16 \cdot q_1 + q_2 = 5 \times 10^{-5} C$ F = -1Nd= 2m Calculate the charge on each sphere. Recell that K=9×109 F= Kq.q $-1 = \frac{9 \times 10^{9} \times (9.925 \times 10^{-5})}{2^{2}}$ $4 = 9 \times 10^{9} \times 5 \times 10^{-5} g_{1} + 9 \times 10^{9} g_{2}$ $4 = 4.5 \times 10^{5} g_{1}^{2} + 9 \times 10^{9} g_{2}$ $4 = 4.5 \times 10^{5} g_{1}^{2} + 9 \times 10^{9} g_{2}$ $4 = 4.5 \times 10^{5} g_{1}^{2} + 9 \times 10^{9} g_{2}$ $4 = 0 \times 10^{9} g_{2} - 4.5 \times 10^{5} g_{1} + 4 = 0$ $9 \times 10^{9} g_{2} - 4.5 \times 10^{5} g_{1} + 4 = 0$ 9 = 0.000003% C $= g_{1} = 1.11 \times 10^{-5} C$ $g_{2} = 3.8 \times 10^{-5} (10^{-5} - 10^{-5})$ 0

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{\partial = 0.5m}{determine Qif electric field at a point fiszer Que = 000 Addy 12^2 = 1^2 + 0.5^21000 = 1 = ex^2 = 17251000 = 1 = ex = 11250.5x = 1.12\theta = 100^{-1}(2)\theta = 63.412^{-1}1^{-1$
$\frac{\partial = 0.5m}{determine \ Qif electric field at a point fiszer \frac{\partial n \theta = 0.01}{Add} \qquad \frac{2^2 = 1^2 + 0.5^2}{52 - 4125} \frac{\partial n \theta = 1}{2} = e \qquad x = 4125 \frac{\partial - 5}{\partial - 5} \qquad x = 1.12$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Add Tane = 1 = e $x = \sqrt{125}$ 0.5 x = 1.12. $\theta = \sqrt{10^{11}(2)}$ $\theta = \sqrt{10^{11}(2)}$ $\theta = \sqrt{10^{11}(2)}$ $\theta = \sqrt{10^{11}(2)}$ $\theta = \sqrt{10^{11}(2)}$ $\eta = \sqrt{10^{11}(2)}$ $\chi = \sqrt{10^{11}(2)}$ $\chi = \sqrt{10^{11}(2)^{11}}$ $\chi = \sqrt{10^{11}(2)^{11}}$
$ \begin{aligned} \begin{aligned} an \theta &= 1 = e & \pi & \pi & \pi \\ 0.5 & \chi &= 1 \cdot 12 \\ \theta &= 10n^{-1}(2) \\ \theta &= 63 \cdot 4 \end{aligned} $ $ \begin{aligned} S & & & & & & & & & & & & & & & & & & &$
$ \begin{array}{c} \varphi = \overline{10n^{-1}(2)} \\ \varphi = 63^{-2}H \\ & & & & & & & & \\ & & & & & & & & \\ & & & & $
$\frac{\theta}{2} = 63.4$ $\frac{2}{2} \sqrt{\frac{2}{2}} \sqrt{\frac{2}$
$\frac{2}{11} + \frac{2}{11} + \frac{2}{11} + \frac{1}{11} $
$\frac{1}{2^{2}} + \frac{1}{2^{2}} + $
$\frac{7^{-1}}{63^{-1}} + \frac{63^{-1}}{63^{-1}} + \frac{63^{-1}}{64^{-1}} +$
$\frac{7^{-1}}{G_2} + \frac{63^{-1}}{J_1} + \frac{63^{-1}}{G_1} + \frac{63^{-1}}{$
$\frac{42}{5.05} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{5.05} = 5739.7.$ $\frac{1}{5.2} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{(1.12)^2} = 5739.7.$ $\frac{1}{5.2} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{(1.12)^2} = 5739.7.$
$\frac{42}{5.05} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{5.05} = 5739.7.$ $\frac{1}{5.2} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{(1.12)^2} = 5739.7.$ $\frac{1}{5.2} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{(1.12)^2} = 5739.7.$
$\frac{42}{5.05} \frac{1}{4} \frac{1}{6.05} \frac{1}{5} \frac{1}{$
$\frac{r_{1}^{2}}{r_{2}^{2}} = \frac{(1 \cdot 12)^{2}}{(1 \cdot 12)^{2}}$ $\frac{1}{r_{1}^{2}} = \frac{1}{r_{1}^{2}} + \frac{10^{9} \times 8 \times 10^{-6}}{(1 \cdot 12)^{2}} = 5739.7^{-1}$
$\frac{\overline{\xi}_{22}}{\Gamma^2} = \frac{9 \times 10^9 \times 8 \times 10^{-6}}{(1 \cdot 12)^2} = 5739.7$
$r^2 (1.12)^2 = 1011$
Mi Ling Marc Surger Children C
$E_{q} = \frac{K_{q}}{K_{q}} = \frac{9 \times 10^{9} \times 2}{9 \times 10^{9} \times 2} = \frac{9 \times 10^{9} \times 2}{2}$
Vector angle χ -comp γ -comp $\xi_1 = 5739.7$ 63.4° $\xi_1 \times los \Theta =$ $\xi_1 \sin \Theta = 5132.17^{\circ}$
$\xi_1 = 5739.7$ 63.4° $\xi_1 \times 1050 =$ $\xi_1 \sin \theta = 5132.17$ -2570.0
- Ez= 57397 63.4° 25700 5132,17
$2q = 9 \times 10^9 q$ 90° $2q \cos \sigma = 0$ $9 \times 10^9 q$
$z_q = 4 \times 10^{-4}$ U $z_q = 0$ $z_s = 0$ $z_s = 10264.5258$ u


magnitude = I(Ex)2 + (Ey)2 Éq = J(0)² + (10264.5258)² Since 22=0 D= 9×1099+10264.5258. making 9 the subject of the formulae. $q = -\frac{10264.5258}{9\times10^9} = 1.14\times10^{-6}$ $q = 11.4\times10^{-6}$

3a.

- Volume charge density,
- Surface charge density,
- Linear charge density,

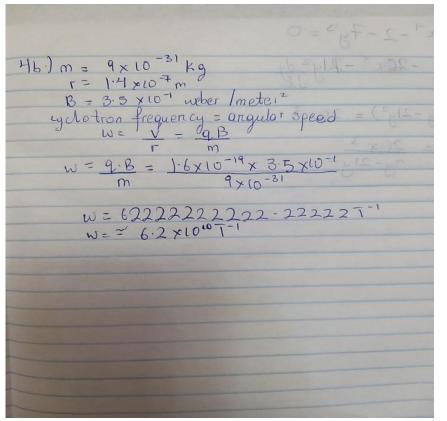
3b. ELECTRIC POTENTIAL DIFFERENCE

The electric potential difference between two points in an electric field can be defined as the work done per unit charge against electrical forces when a charge is transported from one point to the other. It is measured in Volt or Joules per Coulomb . Electric potential difference is a scalar quantity.

Consider the diagram above, suppose a test charge is moved from point to point along an arbitrary path inside an electric field. The electric field exerts a force on the charge as shown in fig 3.1. To move the test charge from to at constant velocity, an external force of must act on the charge. Therefore, the elemental work done is given as:

But

Substituting equation in yields


Then total work done in moving the test charge from to is:

From the definition of electric potential difference, it follows that: Putting equation in yields

SECTION B.

4a. magnetic flux is defined as the strength of the magnetic field which can be represented by line of forces. It is represented by the symbol Φ .mathematically given as Φ =B. d A

4b.

4c. In the question we were given paramiters such as

i.mass of the electron =9.11x10⁻³¹ kg

ii.A radius of 1.4x10⁻⁷m

iii.magnetic field of 3.5x10⁻¹weber\meter square

and you are asked to find the cyclotron frequency which is equal or the same thing as angular speed.it is called cyclotron frequency because it is a frequency of an accelerator called cyclotron.

Recall that angular speed is given as $\omega ==$

Substituting we haveω===1.6x10^-10x3.5x10^-10

9.11x10[^]-31

=62222222222222⁻¹

SO since cyclotron frequency is equal to angular speed the cyclotron frequency is equal to = 62222222222222^{T-1} , having a unit as 1\T which is equal to the unit of frequency dimensionally.

5b.Biot-savart law states that the magnetic field is directly proportional to the product permeability of free space(μ),the current(I),the change in length, the radius and inversely proportional to square of radius (r^2). It can be represented mathematically by

where is a constant called Permeability of free space.

The unit of is weber\metre square

5b. Magnetic Field of a Straight Current Carrying Conductor

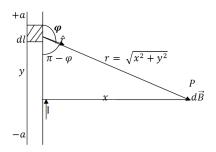


Fig 1: A section of a Straight Current Carrying Conductor Applying the Biot-Savart law, we find the magnitude of the field

From diagram,

Substituting into, we have

Recall

Using special integrals:

Equation therefore becomes

When the length of the conductor is very great in comparison to its distance from point P, we consider it infinitely long. That is, when is much largerthan ,

In a physical situation, we have axial symmetry about the y- axis. Thus, at all points in a circle of radius , around the conductor, the magnitude of B is

Equation defines the magnitude of the magnetic field of flux density B near a long, straight current carrying conductor.