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    ASSIGNMENT 

1a. Most objects are electrically neutral which means that they have an equal number of 

positive and negative charges. In order to charge an object, one has to alter the charge balance 

of positive and negative charges. There are three ways to do it: friction, conduction and 

induction. The induction charging is a charging method that charges an object without 

actually touching the object to any another charged object. The charging by induction process 

is where the charged particle is held near an uncharged conductive material that is grounded 

on a neutrally charged material. The charge flows between two objects and the uncharged 

conductive material develop a charge with opposite polarity. Let us take a negatively charged 

rubber balloon. If we bring the charged balloon near the spheres, electrons within the two-

sphere system will be induced to move away from the balloon due to the repulsion between 

the electrons of the balloon and the spheres. Subsequently, the electrons from sphere A get 

transferred to sphere B. The migration of electrons causes the sphere A to become positively 

charged and the sphere B to be negatively charged. The overall two-sphere system is hence 

electrically neutral. The spheres are then separated using an insulating cover such as gloves 

or a stand as shown in the figure (avoiding direct contact with the metal). When we remove 

the balloon, the charge gets redistributed, spreading throughout the spheres 

 

When a negatively charged balloon is brought near the sphere system, the electrons in the 

sphere will be forced to move away due to repulsion. The migration of electrons causes 

sphere A to become completely positive and sphere B to become negative.   

1b. We are not given the values of the individual charges;  

let them be q1 and q2.  

The condition on the combined charge of the spheres gives us: 

 q1+q2=5.0×10−5C 

The next condition concerns the electrostatic force, and so it involves Coulomb’s Law. Both 

charges are positive because their sum is positive and they repel each other, thus  



|q1|=q1 and |q2|=q2 

Now F = 𝑘
𝑞1𝑞2

𝑟2
 =1.0N 

We know k and r, so we can solve for the value of the product of the charges: 

q1q2= (1.0N)
𝑟2

𝐾
 

  

(1.0N)(2.0m)28.99×109N⋅m2C2=4.449×10−10C2  

Now we have two equations for the two unknowns q1 and q2. 

q2=5.0×10−5−q1 

q1q2=4.449×10−10 

q1(5.0×10−5−q1)=4.449×10−10 

(5.0×10−5q1−q21)=4.449×10−10 

q21−(5.0×10−5C)q1+4.449×10−10=0 

Use a quadratic formula 

q1,2= =
 (5×10−5 ±√(5×10−5)2−4(4.449×10−10)

2
q1=3.84×10−5C; 

q2=1.16×10−5C 



1c. 

 



 

 

 

 

 

 

 

3a.  

(i) Volume charge density, 𝜌 =
𝑑𝑄

𝑑𝑉
 → 𝑑𝑄 = 𝜌𝑑𝑉 

(ii) Surface charge density, 𝜎 =
𝑑𝑄

𝑑𝐴
 → 𝑑𝑄 = 𝜎𝑑𝐴 

(iii) Linear charge density, 𝜆 =
𝑑𝑄

𝑑𝐿
 → 𝑑𝑄 = 𝜆𝑑𝐿 

3b. Electric potential is a location-dependent quantity that expresses 

the amount of potential energy per unit of charge at a specified 

location. When a Coulomb of charge (or any given amount of charge) 

possesses a relatively large quantity of potential energy at a given 

location, then that location is said to be a location of high electric 

potential. And similarly, if a Coulomb of charge (or any given amount 

of charge) possesses a relatively small quantity of potential energy at 



a given location, then that location is said to be a location of low 

electric potential.  

Consider the task of moving a positive test charge within a uniform electric 

field from location A to location B as shown in the diagram at the right. In 

moving the charge against the electric field from location A to location B, 

work will have to be done on the charge by an external force. The work done 

on the charge changes its potential energy to a higher value; and the amount of work that is 

done is equal to the change in the potential energy. As a result of this change in potential 

energy, there is also a difference in electric potential between locations A and B. This 

difference in electric potential is represented by the symbol ΔV and is formally referred to as 

the electric potential difference. By definition, the electric potential difference is the 

difference in electric potential (V) between the final and the initial location when work is 

done upon a charge to change its potential energy. In equation form, the electric potential 

difference is 

 

The standard metric unit on electric potential difference is the volt, abbreviated V and named 

in honor of Alessandro Volta. One Volt is equivalent to one Joule per Coulomb. If the electric 

potential difference between two locations is 1 volt, then one Coulomb of charge will gain 1 

joule of potential energy when moved between those two locations. If the electric potential 

difference between two locations is 3 volts, then one coulomb of charge will gain 3 joules of 

potential energy when moved between those two locations. And finally, if the electric 

potential difference between two locations is 12 volts, then one coulomb of charge will gain 

12 joules of potential energy when moved between those two locations. Because electric 

potential difference is expressed in units of volts, it is sometimes referred to as the voltage. 



3c. 

 

4a. Magnetic Flux is defined as the number of magnetic field lines passing through a given 

closed surface. It gives the measurement of the total magnetic field that passes through a 

given surface area. Here, the area under consideration can be of any size and under any 

orientation with respect to the direction of the magnetic field. 

Magnetic flux formula is given by: 

ϕB=B.A=BAcosΘ 

Where, 

• ΦB is the magnetic flux. 

• B is the magnetic field 



• A is the area 

• θ the angle at which the field lines pass through the given surface area 

4b. 

 

 

5. A law of physics which states that the magnetic flux density (magnetic induction) near a 

long, straight conductor is directly proportional to the current in the conductor and inversely 

proportional to the distance from the conductor. The field near a straight conductor can be 

found by application of Ampère's law. The magnetic flux density near a long, straight 

conductor is at every point perpendicular to the plane determined by the point and the line of 

the conductor. Therefore, the lines of induction are circles with their centers at the conductor. 

Furthermore, each line of induction is a closed line. This observation concerning flux about a 

straight conductor may be generalized to include lines of induction due to a conductor of any 

shape by the statement that every line of induction forms a closed path. 

According to this law, a small segment of a conductor Δl along which a current of strength / 

is flowing creates—at a given point M in space, located at a distance r from the segment Δl 

(Δl << r)—a magnetic field of strength 

 

5b. Magnetic Field of a Straight Current Carrying Conductor 

 

 

 A section of a Straight Current Carrying Conductor 



Applying the Biot-Savart law, we find the magnitude of the field 𝒅𝑩⃗⃗  

𝑩 = 
𝝁𝒐𝑰

𝟒𝝅
∫

𝒅𝒍 𝐬𝐢𝐧𝝋

𝒓𝟐

𝒂

−𝒂

 

𝒔𝒊𝒏(𝝅 –𝝋) =  𝒔𝒊𝒏𝜽 

∴ 𝑩 =  
𝝁𝒐𝑰

𝟒𝝅
∫

𝒅𝒍𝒔𝒊𝒏(𝝅 − 𝝋)

𝒓𝟐

𝒂

−𝒂

 

From diagram, 𝒓𝟐 = 𝒙𝟐 + 𝒚𝟐 (𝑷𝒚𝒕𝒉𝒂𝒈𝒐𝒓𝒂𝒔 𝒕𝒉𝒆𝒐𝒓𝒆𝒎) 

𝑩 = 
𝝁𝒐𝑰

𝟒𝝅
∫

𝒅𝒍𝒔𝒊𝒏(𝝅 –𝝋)

𝒙𝟐 +  𝒚𝟐

𝒂

−𝒂

     …      (∗) 

𝑩𝒖𝒕  𝒔𝒊𝒏(𝝅 − 𝝋) =  
𝒙

√𝒙𝟐 +  𝒚𝟐
=

𝒙

(𝒙𝟐 +  𝒚𝟐)𝟏 𝟐⁄
  …      (∗∗) 

Substituting 

𝑩 = 
𝝁𝒐𝑰

𝟒𝝅
∫ 𝒅𝒍

𝒂

−𝒂

𝒙

(𝒙𝟐 + 𝒚𝟐)(𝒙𝟐 + 𝒚𝟐 )𝟏/𝟐
 

 

𝑩 = 
𝝁𝒐𝑰

𝟒𝝅
∫ 𝒅𝒍

𝒂

−𝒂

𝒙

(𝒙𝟐 + 𝒚𝟐 )𝟑/𝟐
 

Recall   𝒅𝒍 = 𝒅𝒚 

𝑩 = 
𝝁𝒐𝑰

𝟒𝝅
∫

𝒙

(𝒙𝟐 + 𝒚𝟐 )𝟑 𝟐⁄
𝒅𝒚

𝒂

−𝒂

 

𝑩 =
𝝁𝒐𝑰𝒙

𝟒𝝅
∫

𝟏

(𝒙𝟐 + 𝒚𝟐 )𝟑/𝟐
𝒅𝒚

𝒂

−𝒂

   …     (∗∗∗) 

Using special integrals: 

∫
𝒅𝒚

(𝒙𝟐 +  𝒚𝟐)𝟑/𝟐
=

𝟏

𝒙𝟐

𝒚

(𝒙𝟐 +  𝒚𝟐)𝟏/𝟐
 

𝑩 = 
𝝁𝒐𝑰𝒙

𝟒𝝅
[

𝒚

𝒙𝟐(𝒙𝟐 + 𝒚𝟐)𝟏 𝟐⁄
]
−𝒂

𝒂

 

𝑩 =
𝝁𝒐𝑰𝒙

𝟒𝝅
(

𝟐𝒂

𝒙𝟐(𝒙𝟐 +  𝒂𝟐)𝟏 𝟐⁄
) 

𝑩 =
𝝁𝒐𝑰

𝟒𝝅𝒙
(

𝟐𝒂

(𝒙𝟐 +  𝒂𝟐)𝟏 𝟐⁄
) 

When the length 𝟐𝒂 of the conductor is very great in comparison to its distance 𝒙 

from point P, we consider it infinitely long. That is, when 𝒂 is much larger than𝒙, 



(𝒙𝟐 +  𝒂𝟐)𝟏/𝟐 ≅ 𝒂, 𝒂𝒔 𝒂 → ∞ 

∴ 𝑩 =  
𝝁𝒐𝑰

𝟐𝝅𝒙
 

In a physical situation, we have axial symmetry about the y- axis. Thus, at all points in 

a circle of radius𝒓, around the conductor, the magnitude of B is  

𝑩 = 
𝝁𝒐𝑰

𝟐𝝅𝒓
              …           (#) 

         This defines the magnitude of the magnetic field of flux density B near a long, 

straight current carrying conductor. 

 

 

 

 

 

 

   

 

 


