MATRIC NO: 19/sci01/007
DEPARTMENT: Computer science

PHY102 HOLIDAY ASSIGNMENT

1a. Charging by induction:
Electric charges can be obtained on an object without touching it, by a process called electrostatic induction. Consider a negatively charged rubber rod brought near a neutral (uncharged) conducting sphere that is insulated so that there is no conducting path to ground as shown below. The repulsive force between the electrons in the rod, and those in the sphere causes a redirection of charges on the sphere so that some electrons move to the side of the sphere farthest away from the rod (fig 1.3a). The region of sphere nearest the negatively charged rod has an excess of positive charge because of the migration of electrons away from the location. If a grounded conducting wire is then connected to the sphere as in (fig 1.3b), some of the electrons leave the sphere and travel to the earth. If the wire to the ground is then removed (fig $1.3 c$), the conducting sphere is left with an excess of induced positive charge. Finally, when the rubber rod is removed from the vicinity of the sphere (fig 1.3 d), the positive charge remains on the underground sphere and becomes uniformly distributed over the surface of the sphere.

15) $k=4 \times 10^{9}$

$$
\begin{aligned}
& k=4 \pi \\
& q_{1}+q_{2}=5 \times 40^{-5} \mathrm{c} \\
& f=1 \times 1 \\
& d=2 \mathrm{~m}
\end{aligned}
$$

Clayge on each spinere $=$

$$
\begin{aligned}
& F=\frac{\mathrm{kq}, q_{2}}{n_{2}} \\
&=\frac{5 \times 10^{9} \times\left(q_{1} q_{2} .5 \times 10^{-5}\right)}{\tau^{2}} \\
& 4=9 \times 10^{9} \times 5 \times 10^{-5} q_{1}+9 \times 10^{9} q_{2} \\
& 4=4.5 \times 10^{5} q_{1}+9 \times 10^{9} q_{2} \\
& q_{1010^{9} q_{2}-4.5 \times 10^{5} q_{1}+4=0}^{q_{1}}=0.0000111 \mathrm{c} \Rightarrow 1.11 \times 10^{-5} \mathrm{c} \\
& q_{2}=3.8 \times 10^{-5} \mathrm{C}
\end{aligned}
$$

1c.

2a. Electric field is a region of space in which electric charges will experience an electric force while electric intensity is the force per unit charge.

2b.

4a. Magnetic flux is defined as the strength of the magnetic field which can be represented by line of forces. It is represented by the symbol ${ }^{\phi}$. Mathematically given as ${ }^{\phi}=\beta$ - Da

4b/c.

5a. Biot-savart law states that the magnetic field is directly proportional to the proportional to the product permeability of free space (μ), the current (I), the change in length, the radius and inversely proportional to the square of radius (r^{2}). It can be represented mathematically by:
$\alpha \beta=\mu_{0} \mathrm{Id} \mathrm{dxr} / 4 \pi \mathrm{r}^{2}$
unit of β is weber/meter square

5b.
5) magretres fick of a straight current caroying conductor

A sectron of streight current canying conductor.
Appryig the Biot-savart law, we pid the magnitu of the field $d \bar{B}$
$B=\frac{\log _{0} I}{4 \pi} \int_{-a}^{9} \frac{d r \sin \phi}{r^{2}}$
$\sin (\bar{n}-\phi)=\sin \theta$
$\therefore \delta=\frac{40!}{4 \pi} \int_{-4}^{\pi} \frac{d 6 \sin (\bar{a}-\phi)}{r^{2}}$
from the d iggram $r^{2}=x^{3}+y^{2}$ fir

$$
B=\frac{\mu_{0} T}{4 \sqrt{x}} \int_{-9}^{9} \frac{d x_{\sin (\bar{A}-\theta)}^{x^{2}+y^{2}}}{x}
$$

Sut $\sin (\bar{\pi}-\phi)=\frac{x}{\sqrt{x^{2}+y}}=\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{2} / 2}$

$$
\begin{aligned}
& B=\frac{w u_{0} I}{4 \pi} \int_{-\frac{\pi}{4}}^{9} \frac{d l}{\left(x^{2}+j^{2}\right)\left(x^{2}+y^{2}\right)^{1 / 2}} \\
& B=\frac{\mu}{4} \int_{-}^{4} \frac{d l}{\left(c^{2}+y^{2}\right)^{\frac{1}{2}}}
\end{aligned}
$$

racall $\mathrm{dl}=d y$

$$
\begin{align*}
& B=\frac{\mu_{0} I}{4 n} \int_{-a}^{4} \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \\
& B=\frac{\mu_{0} I x}{4 \pi} \int_{-9}^{9} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \tag{3}
\end{align*}
$$

asig special integrals: $\int \frac{d}{\left(x^{2}+y^{2}\right)^{5 / 2}}=\frac{1}{x^{2}} \cdot \frac{-1}{\left(x^{2}+y^{2}\right)^{1 / 2}}$

$$
\begin{aligned}
& B=\frac{\mu_{0} I x}{4 \pi}\left(\frac{1}{x^{2}\left(x^{2}+J^{2}\right)^{1 / 2}}\right)^{9} \\
& B=\frac{\mu_{0} I x}{4 \pi}\left(\frac{2 x}{\left(x^{2}\left(x^{2}+a^{2}\right)^{\frac{1}{2}}\right.}\right) \\
& B=\frac{\mu_{0} I 0}{4 \pi x}\left(\frac{2 a}{\left(x^{2}+a^{2}\right)^{1 / 2}}\right)
\end{aligned}
$$

when the longth 25 of the corductor is verygeat in comperison toit's distancex from point P we cossider it iofintely long That 8, when a is much largotitux, $\left(x^{2}+9^{2}\right)^{1 / 2} \sim 9.555 \rightarrow \infty$

$$
B=\frac{-105}{\sqrt[n]{n} x}
$$

- In a puysical sifuation, we have axial symmetry gount the yaxi Thus, at all points in a corcle of radiusir around the conductor the magnizude of B is: $B=\frac{\text { wioI }}{\text { थाr }}$
\Rightarrow magaitude of magretic fold if flux donsity \& war a cowe straigut currest carrjing condu ofor

