NAME: OLULEYE olumuyiwa

 olusolaDEPT: medicine and surgery
MAT NO.:19\MHS01/339
COURSE CODE: PHY 102
COVID-19 ASSINGMENT.
$C O Y C D-19-A S S$
Name: OLULEYE OLUMUYIWA OLUSOLA MATRES NO: $19 \mid \mathrm{mHSO} / 339$
COLLEGE: MAS
DEPT : Medicine and surgery
SEction A

1) a) A negatively charged rod is brought near a neutral charged stere

Due to attraction and repulsion the t-tive charges attract to the rod white the negative charges go to Ki other end

Then a grounded conducting wire is
connected to the sphere. Some electrons leave $\%$ through the

WT.
Then the rod is removed from
the vicinity of the sphere and the
positive charges are distributed
uniformly. The skep sphere becomol positively charger

let $q_{1}=x$ and $q_{2}=y$	
$Q 1=9 \times 10^{9}$	
(1 B	
	$q_{1}=1.11 \times 10^{-5} \mathrm{c}$
$q_{1}+q_{2}=5.0 \times 10^{-3} \mathrm{C}$	$q_{2}=3.89 \times 10^{-5} \mathrm{C}$
$7=1.0 \times \quad r=2.0 \mathrm{~m} \quad k=9 \times 10^{9}$	
$q_{2}=5.0 \times 10^{-5}-q_{1}$	
let $q_{2}=y$ and $q_{1}=x$	
$F=k \operatorname{scy}$	
r^{2}	
$1=9 \times 10^{9} \times x \times\left[5.0 \times 10^{-5}-x\right]$	
- 2^{2}	
$1=9 \times 10^{9} \times \times 5.0 \times 10^{-5}-x^{2}$	
4	
$4=5.0 \times 10^{-5} x-x^{2}$	
9×10^{9}	
$4 \times 10^{-10}=5.0 \times 10^{-5} x-x^{2}$	
$x^{2}-5.0 \times 10^{-3} x+4 \times 10^{-10}=0$	
Using quádratic Eqn	

1c.continued

Ba.
(i) Volume charge density, $\boldsymbol{\rho}=\frac{d Q}{d V} \rightarrow \boldsymbol{d Q}=\boldsymbol{\rho d V}$
(ii) Surface charge density, $\sigma=\frac{d Q}{d A} \rightarrow \boldsymbol{d Q}=\sigma d A$
(iii) Linear charge density, $\lambda=\frac{d Q}{d L} \rightarrow \boldsymbol{d Q}=\lambda d L$

3b. ELECTRIC POTENTIAL DIFFERENCE

The electric potential difference between two points in an electric field can be defined as the work done per unit charge against electrical forces when a charge is transported from one point to the other. It is measured in Volt (\boldsymbol{v}) or Joules per Coulomb (J / C). Electric potential difference is a scalar quantity.

Consider the diagram above, suppose a test charge $\boldsymbol{q}_{\boldsymbol{o}}$ is moved from point \boldsymbol{A} to point \boldsymbol{B} along an arbitrary path inside an electric field \boldsymbol{E}. The electric field \boldsymbol{E} exerts a force $\boldsymbol{F}=\boldsymbol{q}_{\boldsymbol{o}} \boldsymbol{E}$ on the charge as shown in fig 3.1. To move the test charge from \boldsymbol{A} to \boldsymbol{B} at constant velocity, an external force of $\boldsymbol{F}=-\boldsymbol{q}_{\boldsymbol{o}} \boldsymbol{E}$ must act on the charge. Therefore, the elemental work done $d W$ is given as:

$$
\begin{equation*}
d W=F . d L \tag{1}
\end{equation*}
$$

But

$$
\begin{equation*}
F=-q_{0} E \quad \ldots \tag{2}
\end{equation*}
$$

Substituting equation (2) in (1) yields
$d W=-q_{0} E d L \quad$... (3)W-q_0EdL ...
Then total work done in moving the test charge from \boldsymbol{A} to \boldsymbol{B} is:

$$
\begin{equation*}
W(A \rightarrow B)_{A g}=-q_{0} \int_{A}^{B} E d L \tag{4}
\end{equation*}
$$

From the definition of electric potential difference, it follows that:
$V_{B}-V_{A}=\frac{W(A \rightarrow B)_{A g}}{q_{0}}$
(5) Putting equation
(4) in (5) yields

$$
\begin{equation*}
V_{B}-V_{A}=-\int_{A}^{B} E d L \tag{6}
\end{equation*}
$$

SECTION B.

4a. magnetic flux is the number of magnetic field that passae through a given closed surface.

4c.
Recall that angular speed is given as $\omega=\frac{v}{r}=\frac{q B}{m}$
Substituting we have
$\frac{q B}{m}=\frac{1.6 \times 10^{-19} \times 3.5 \times 10^{\wedge}-1}{9.11 \times 10^{\wedge}-31}=622222222.22222 \mathrm{~T}^{-1}$
since cyclotron frequency is equal to angular speed the cyclotron frequency is equal to $=6.2 \times 1010$, having a unit as $1 \backslash T$ which is equal to the unit of frequency dimensionally.

5b.Biot-savart law states that the magnetic field is directly proportional to the product permeability of free space (μ),the current (I),the change in length, the radius and inversely proportional to square of radius (r^{2}). It can be represented mathematically by

$$
d \vec{B}=\frac{\mu_{o}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}
$$

where $\boldsymbol{\mu}_{\boldsymbol{o}}$ is a constant called Permeability of free space.

$$
\mu_{o}=4 \pi \times 10^{-7} T \cdot \frac{m}{A}
$$

The unit of \vec{B} is weber \backslash metre square

5b. Magnetic Field of a Straight Current Carrying Conductor

Fig 1: A section of a Straight Current Carrying Conductor

Applying the Biot-Savart law, we find the magnitude of the field $\boldsymbol{d} \overrightarrow{\boldsymbol{B}}$

$$
\begin{gathered}
B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin \varphi}{r^{2}} \\
\sin (\pi-\varphi)=\sin \theta \\
\therefore B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin (\pi-\varphi)}{r^{2}}
\end{gathered}
$$

From diagram, $r^{2}=x^{2}+y^{2}($ Pythagoras theorem)

$$
\begin{gather*}
B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin (\pi-\varphi)}{x^{2}+y^{2}} \quad \ldots \quad(*) \tag{*}\\
\text { But } \sin (\pi-\varphi)=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}} \ldots \tag{**}
\end{gather*}
$$

Substituting (**) into (*), we have

$$
\begin{gathered}
B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{1 / 2}} \\
B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{gathered}
$$

Recall $d \boldsymbol{l}=\boldsymbol{d} \boldsymbol{y}$

$$
\begin{gathered}
B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \\
B=\frac{\mu_{0} I x}{4 \pi} \int_{-a}^{a} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \quad \ldots \quad(* * *)
\end{gathered}
$$

Using special integrals:

$$
\int \frac{d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{x^{2}} \frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}
$$

Equation ($* * *$) therefore becomes

$$
B=\frac{\mu_{o} I x}{4 \pi}\left[\frac{y}{x^{2}\left(x^{2}+y^{2}\right)^{1 / 2}}\right]_{-a}^{a}
$$

$$
\begin{gathered}
B=\frac{\mu_{0} I x}{4 \pi}\left(\frac{2 a}{x^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}\right) \\
B=\frac{\mu_{o} I}{4 \pi x}\left(\frac{2 a}{\left(x^{2}+a^{2}\right)^{1 / 2}}\right)
\end{gathered}
$$

When the length $2 \boldsymbol{a}$ of the conductor is very great in comparison to its distance \boldsymbol{x} from point P, we consider it infinitely long. That is, when \boldsymbol{a} is much largerthan \boldsymbol{x},

$$
\begin{gathered}
\left(x^{2}+a^{2}\right)^{1 / 2} \cong a, \text { as } a \rightarrow \infty \\
\therefore B=\frac{\mu_{o} I}{2 \pi x}
\end{gathered}
$$

In a physical situation, we have axial symmetry about the y - axis. Thus, at all points in a circle of radius r, around the conductor, the magnitude of B is

$$
B=\frac{\mu_{o} I}{2 \pi r}
$$

Equation (\#) defines the magnitude of the magnetic field of flux density B near a long, straight current carrying conductor.

