Name:TEBITE Victory Edafe

Matric No:19/mhs02/113

Course:chemistry 102

Department: Nursing

1) CH3OCH3: methoxymethane

➤ CH₃CH₂OCH₂CH₃: Ethoxyethane

➤ (CH₃CH₂CH₂CH₂)₂O: Butoxymethane

➤ CH₃CH₂OCH₃: Methoxyethane

➤ CH₃CH₂CH₂OCH₂CH₃: Ethoxypropane

2) Reactivity. They are inert at moderate temperature.

- Boiling point: Low molecular mass others have a lower boiling point than
 corresponding alcohols but those others with alky radicals larger than four carbon
 atoms the reverse is te the case.
- Density:most simple ethers are less dense than water, although density increases
 with increasing relative molecular mass and some aromatic ethers are denser than
 water.
- Solubility: they are less soluble in water than the corresponding alcohols due to the
 molecules being able to form hydrogen bonds with water but if the hydrocarbon
 content of the molecules increases, solubility declines rapidly. They are miscible
 with most organic solvents.
- Physical state: they are colourless at room temperature, neutral liquids with pleasant odours, highly flammable gases or volatile liquids.
- 3) They can be produced from Haloalkanes and dry silver(I) oxide

2RX+Ag₂O warm R-O-R+2AgX

2CH₃CH₂CH₂CI +Ag₂O warm CH₃CH₂CH₂CH₂CH₂CH₃ +2AgCl

Propoxypropane

ii) Partial dehydration of alcohols: simple ethers are manufactured from alcohols by catalytic dehydration. The alcohol in excess and concentrated tetraoxosulphate (vi) acid is heated at a carefully maintained temperature of 140c. This process is known as continuous etherification, if excess alcohol is not used, the temperature is as high as 170-180 degrees c,

further dehydration to yield alkane occurs .

2ROH concH₂SO₄/140C R-O-R + H₂O

2CH₃CH₂OH concH₂SO₄/140C CH₃CH₂-O-CH₂CH₃+H₂O

4)Ethylene oxide is used as a gaseous sterlizing agent.

Ethylene oxide is used in the preparation of nonionic emulsifying agents, plasticizers, plastics and several synthetic textiles.

Ethylene oxide is used as an intermediate in hydrolytic manufacture of ethylene glycol.