Tame: Aniegboka Victor Olwavo

TKakic OKa:19/sci01 / 020
Departiment:Computer Science
Course Code: SFHY 102
Assignment
Section \mathbb{Q}

1. Charging by induction

Electric charges can be Obtained on object without touching it, by a process called electrostatic induction. Consider a negatively charged cuber nod brought near a neutral (uncharged) conducting sphere that is insulated so that there is no conducting path to ground as shown below. The repubion force between the elections in the wa, and those in the sphere so that some election move to the side of the farthest away from the nod has an excess of positive charge because of the migration of election away from this location. If a grounded conducting wive is the elections leave the sphere and travel to the earth. If the wise to the ground is then removed, the conducting aphere is left with an excess of induced positive charge. FInally, when the miler wad is removed from the sicinity of the sphere the induced positive charge remains on an sphere and becomes uniformly distributed over the surface of the sphere
a). $:=q_{x} 10^{9}$

$$
\begin{aligned}
& .91+q 2=5 \times 10^{-5} \mathrm{C} \\
& .6=1 \mathrm{~N} \\
& d=2 m \\
& \text { Charge on each sphere=? } \\
& \text {. } 6=\lg 792 / \mathrm{m}^{2} \\
& 1==_{x} 10^{-9}\left(91925_{x} 10^{-5}\right) / 2^{2} \\
& 4=9 \times 10^{\circ} \times 5 \times 10^{-5} q 1+q 2 \times 10^{9} \\
& 4=4.5 \times 10^{5} 91+4=0 \\
& \text { Quadratic equation } \\
& 9 \times 10^{9} 92-4.5 \times 10^{3} 91+4=0 \\
& .91=0.00001110=1.11 \times 10^{-5} \mathrm{C} \\
& .92=0.000038 c=3.8 \times 10^{-5} \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& } Q=Q 2=8 U c \\
& D=0.5 \mathrm{~m} \\
& \text { If electric field point p is zero }
\end{aligned}
$$

$$
\begin{aligned}
& 2 d=0.5 q d=0.5 \\
& E 1=\lg 1 / r^{2} \\
& =9 \times 10^{9} \times 8 \times 10^{-6} /(1.12) \\
& =57397.9598 \\
& x^{2}=1^{2}+0.5 \\
& =\sqrt{1} .25 \\
& . x=1.12 \\
& \operatorname{Tan}=o p p / a d j \\
& \operatorname{Tan}=1 / 0.5 \\
& \theta=\operatorname{Tan}^{-1} \\
& =63.4
\end{aligned}
$$

$=9 \times 10^{9} \times 8 \times 10^{-6}=57387.95918$
$E_{q}=h_{q} / r^{2}=9_{x} 10^{9} \times g / 1=9_{x} 10^{9} q$

Vector	Angle	X-component	Y-component
$E_{1}=57397.95918$	63.4°	$E_{1 \text { cos }} \theta=2570.04785$	$E_{1 \text { sin }} \theta=5132.26283$
$E_{2}=57397.95918$	63.4°	2570.046785	5132.26283
$E_{q}=9_{x} 10^{9} q$	90°	$E_{q} \cos \theta=0$ $E_{x}=0$	$9 x 10^{9} 9$ $E_{y}=10264.52568$

* Magnitude $=\sqrt{ }\left(E_{x}\right)^{2}+\left(E_{y}\right)^{2}$
$E_{q}=\sqrt{ }(0)^{2}+(10264.52568)^{2}$
Since $E_{q}=0$
$0=9_{x} 10^{9}+10264.52568$
Maling 9 subject of the forcumlar
$. q=10264.52568 / q_{x} 10^{9}$
$q=1.14050285 \times 10^{-16}$
$.9=11.4 \mathrm{Uc}_{\mathrm{c}}$
* The induced positive charge remains on the underground sphere and becomes uniformly distributed over the surface of the sphere

Volume charge density $\int=d Q / d v n d Q=\int d v$
Surface charge density $=d Q / d A \cap d Q=\tilde{O} d A$
Linear charge density $=d Q / d l$ in $d Q=d l$

* Electric potential Difference

The electric potential difference between two points in an electric field can be defined as the work done per unit charge against electrical forces when a charge is transparent from one point to another. It is measured in volt (ν) or jolts per unit cohmb $(\mathrm{J} / \mathrm{C})$ it is a scaler quantity
Elemental work done ∂w is given as

$$
\begin{aligned}
& d w=F \cdot d b-(1) \\
& F=q_{0} b--(2)
\end{aligned}
$$

Substituting equation (2)in(1) $=d \omega=-q_{0}$ Ed $-(3)$

$$
W\left(A^{\prime}{ }_{n} B\right)_{A_{g}}=-90 \int_{A} E d b-(4)
$$

$\mathcal{F F}_{\text {rom }}$ the Definition of electric potential Difference follows that:

$$
V B-V A=W\left(A^{\prime} \cap B\right) A_{g} 90
$$

Putting equation (4) in (3) yields $V B-V A=-\int{ }^{B}{ }_{A} E d l-(b)$

* Section B

Magnetic field is defined as the strength of the magnetic field which can be represented by line of forces. It is represented by the symbol $\triangle B-d A$
$m=g_{x} 10^{-31} \mathrm{lg}$
$. \mu=1.4 \times 10^{-1} \mathrm{~m}$
$B=3.5 \times 10^{-1}$ weber/ meter
Cyclone frequency = angular speed
$W=u / n=q B / m$
$W=q B / m=1.6 \times 10^{-19} \times 3.5 \times 10^{-1} / 9.9 \times 10^{-31}$
$W=6.22 \times 10^{10} \mathrm{~F}^{-1}$
*. Mass of electron= $=9.11 \times 10^{-33} \mathrm{~kg}$
Radius $=1.4 \times 10^{-7}$
Magnetic field $=3.5 \times 10^{-1}$ weber/ meter 2
Cyclone frequency can be called angular speed
Recall angular speed $W=u / \kappa=q 6 / \mathrm{m}$
Substituting we have $W=u / k=96 / \mathrm{m}=1.6 \times 10^{-19} \times 3.5 \times 10^{-1} / 9.11 \times 10^{-31}$
$=6.22 \times 10^{10} \mathrm{~F}^{-1}$
S_{0} cyclotron frequency $=6.22 \times 10^{10} \mathrm{~T}^{-1}$, the unit is equal to the frequency dimentionally.
But-osivatet have states that the magnetic field is directly proportional to the product permeability of free space (थ) the current (F), the change in length, the radius of $\left(v^{2}\right)$

* It can be represented mathematically by
$d B=M o / D D_{x} / 4 \Pi r^{2}$ where $\mathcal{U}_{\text {is constant called }}$
Permeability of free space
$U=4 \pi \times 10^{-7} 7 \mathrm{~m} / \mathrm{a}$
$Q_{\text {nit }}$ of B is weber/ meter square
Magnetic field of a straight current carrying conductor

Applying the Bio--(avart law, we find the magnitude of the field $d \vec{B}$

$$
\begin{gathered}
B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin \varphi}{r^{2}} \\
\sin (\pi-\varphi)=\sin \theta \\
\therefore B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin (\pi-\varphi)}{r^{2}}
\end{gathered}
$$

$\mathfrak{F}_{\text {rom diagram, }} r^{2}=x^{2}+y^{2}$ (Pythagoras theorem)

$$
\begin{equation*}
B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} \frac{d l \sin (\pi-\varphi)}{x^{2}+y^{2}} \tag{*}
\end{equation*}
$$

But $\sin (\pi-\varphi)=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}} \cdots \quad(* *)$
Substituting ($* *$) into ($*$), we have

$$
\begin{gathered}
B=\frac{\mu_{o} I}{4 \pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)^{1 / 2}} \\
B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} d l \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{gathered}
$$

Recall $d l=d y$

$$
\begin{gathered}
B=\frac{\mu_{0} I}{4 \pi} \int_{-a}^{a} \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \\
B=\frac{\mu_{o} I x}{4 \pi} \int_{-a}^{a} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y \quad \ldots \quad(* * *)
\end{gathered}
$$

Using special integrals:

$$
\int \frac{d y}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{x^{2}} \frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}
$$

$$
\left(\frac{2 a}{\left(x^{2}+a^{2}\right)^{1 / 2}}\right)
$$

When the length $2 a$ of the conductor is Dery great in comparison to its distance X from point \mathscr{P}, we consider it infinitely long. That is, when a is much larger than X,

$$
\begin{gathered}
\left(x^{2}+a^{2}\right)^{1 / 2} \cong a, \text { as } a \rightarrow \infty \\
\therefore B=\frac{\mu_{o} I}{2 \pi x}
\end{gathered}
$$

In a physical situation, we have axial symmetry about the y-axis. Thus, at all points in a circle of radius r, around the conductor, the magnitude of \mathcal{B} is

$$
B=\frac{\mu_{o} I}{2 \pi r}
$$

Equation (\#) defines the magnitude of the magnetic field of flux density B near a long, straight current carrying conductor.

