NAME; ALE-ALABA OLUWASEUN OLUMIDE
 MATRIC; 19/ENG06/064
 DEPT; MECHANICAL ENGINEERING
 COURSE; ENG 232 (ENGINEERING DRAWING)

Question 1; How do you represent a sectioned surface on a drawing;
Answer; you represent a sectioned surface by hatching with thin sectioned lines[continuous] uniformly spaced and inclined at 45°

Question 2; list out the various principles to be followed while dimensioning a drawing;

Answer;

- Dimensions lines should be a thin continuous line
- Use the same type of arrow head to terminate the dimension line
- Use a leader or a pointer [thin continuous line] to connect a note or a dimension figure
- Dimensions should be placed near the middle and above/un-top the dimension line (that is using the aligned system) OR dimension lines are broken near the middle and dimensions are placed
- All dimensions should be in millimeter (mm) and if otherwise, it should be stated
- Dimensions lines should be drawn at least 8 mm away from the outlines and from each other and the right conventional symbol should be placed for the right dimensions e.g $\emptyset 20$

Question 3; Explain the term full section and half section

Answer;

Full section; this is when the cutting plane passes completely through the object with all visible- edges behind the plane shown

Half section; this is when the cutting plane passes half of the object or the view of an object showing one-half of the view in section

Question 4; How are Leader lines terminated.
Answer; Leader lines are terminated with either an arrow head or a dot. The arrow head touches the outline, while the dot is placed within the outline of the object

Question 5; What do you understand by (a) Scale 5:1 (b) Scale 1:10
Answer;
Scale 5:1; it means that the drawing was magnified 5 times the original drawing
Scale 1:10; it means that the drawing is 10 times smaller than the original drawing.
Question 6; Give the shape identification symbols for the following
Answer;
Diameter = \varnothing, D, Bia
Radius $=\mathrm{R}$
Square \bigotimes
Spherical radius; SR
Centre Line:
Cutting plane

Long break

Question 7; what are the elements to be considered will obtaining a projection and what is an orthographic projection

Answer;
Elements are;

- Hidden details
- Direction/position of view [whether from left/right]
- Edges

Orthographic projection; This is when an object is represented by two or three views on the mutual perpendicular projection planes that is Front view, side/end view, top/plan view. The projection lines are parallel to each other and perpendicular to the plane Question 8; When is the projection of an object called an orthographic projection Answer; when a projection is called orthographic is when the projection lines/projectors are parallel and normal to the plane

Question 9;

Answer;
First angle projection; This is when the Front elevation/view is above the plan, and whatever is viewed from the left goes to the right and vice versa.

Symbol for first angle projection
Third angle projection; This is when the plan is above the front elevation/view and whatever is viewed from the left/right remains at the left/right

Symbol for third angle projection

OBJECTIVES

Question 1; To project the auxiliary view an imaginary plane known as \qquad
Answer; reference plane (a)
Question 2; Reference plane is parallel to the direction of view
Answer; False (b)
Question 3; Dimensions of one side of the inclined surface can be \qquad projected on the reference plane

Answer; Directly (c)

Question 4; in isometric projection the three edges of an object are inclined to each other at

Answer; $\mathbf{1 2 0}^{\mathbf{0}}$ (b)
Question 5; The angle between the flanks of a metric thread is
Answer; $\mathbf{6 0}{ }^{\circ}$ (a)
Question 6; Which one among the following represents a permanent fastener
Answer; Rivet (b)
Question 7; The convexity provided on the rim of the solid web cast iron pulley is called Answer; Crowning (c)

Question 8; Section lines are generally inclined with the base at an angle of
Answer; 45° (b)
Question 9; The isometric view of a sphere is always
Answer; Circle (a)
Question 10; In isometric projection, the four-center method is used to construct
Answer; Ellipse (a)
Question 11
Answer; Cylinder (c)
Question 12
Answer; Cone (a)
Question 13; A footstep bearing is a
Answer; Thrust Bearing (b)
Question 14; The angle between the flanks of B.S.W thread is
Answer; 55° (c)
Question 15; The top view is projected on the
Answer; Horizontal plane (d)

