Sarah Odekwo

18/ENG02/066

Computer Engineering

1. $D_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$D_{2}=75 \mathrm{~mm}=0.075 \mathrm{~m}$
$\mathrm{Z}_{2}-\mathrm{Z}_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
$Q_{\text {act }}=40$ litres $/ \mathrm{sec}=0.04 \mathrm{~m}^{3} / \mathrm{s}$
$C_{d}=0.96$
To find the difference in pressure:
$\mathrm{A}_{1}=\frac{\pi}{4} D_{1}{ }^{2}=\frac{\pi}{4} \times(0.15)^{2}=0.01767 \mathrm{~m}^{2}$
$A_{2}=\frac{\pi}{4} D_{2}^{2}=\frac{\pi}{4} \times(0.075)^{2}=0.00442 \mathrm{~m}^{2}$
$\mathrm{Q}_{\mathrm{act}}=\mathrm{C}_{\mathrm{d}} \times \frac{\mathrm{A} 1 \mathrm{~A} 2}{\sqrt{\mathrm{~A}^{2}-\mathrm{A}^{2}}} \times \sqrt{2 g h}$
$0.04=0.96 \times \frac{0.01767 \times 0.00442}{\sqrt{0.01767^{2} \times 0.00442^{2}}} \times \sqrt{2 \times 9.81} \times \sqrt{h}$
$h=\left(\frac{0.04}{0.96 \times 0.004565 \times 4.429}\right)^{2}=4.247 \mathrm{~m}$
Also,

$$
\begin{aligned}
& h=\left(\frac{\mathrm{P}_{1}}{w}+z_{1}\right)-\left(\frac{\mathrm{P}_{2}}{w}+z_{2}\right) \\
& \begin{aligned}
4.247 & =\left(\frac{\mathrm{P}_{1}}{w}-\frac{P_{2}}{w}\right)+\left(z_{1}-z_{2}\right)=\left(\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\rho g}\right)-0.15 \\
\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) & =\rho \mathrm{g}(4.247+0.15)=(0.8 \times 1000 \times 9.81)(4.247+0.15) \\
& =34507.656 \mathrm{~N} / \mathrm{m}^{2} \\
& \approx 34.51 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
\end{aligned}
$$

2. $D_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m}$

$$
D_{2}=150 \mathrm{~mm}=0.15 \mathrm{~m}
$$

$$
A_{1}=\frac{\pi}{4} \times 0.3^{2}=0.07 \mathrm{~m}^{2}
$$

$$
A_{2}=\frac{\pi}{4} \times 0.15^{2}=0.01767 \mathrm{~m}^{2}
$$

$$
S_{h l}=13.6
$$

$$
S_{p}=0.9
$$

$$
y=250 \mathrm{~mm}=0.25 \mathrm{~m}
$$

$$
h=\left(\frac{\mathrm{P}_{1}}{w}+z_{1}\right)-\left(\frac{\mathrm{P}_{2}}{w}+z_{2}\right)
$$

$$
=\mathrm{y}\left[\frac{s_{h l}}{s_{p}}-1\right]=0.25\left[\frac{13.6}{0.9}-1\right]
$$

$$
=3.53 \mathrm{~m} \text { of oil }
$$

To find the discharge of oil (Q):

Using the formula,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{C}_{\mathrm{d}} \times \frac{\mathrm{A} 1 \mathrm{~A} 2}{\sqrt{\mathrm{A1}^{2}-\mathrm{A2}^{2}}} \times \sqrt{2 \mathrm{gh}} \\
\mathrm{Q} & =0.98 \times \frac{0.07 \times 0.01767}{\sqrt{0.07^{2}-0.01767^{2}}} \times \sqrt{2 \times 9.81 \times 3.53} \\
& =\frac{0.001212}{0.0677} \times 8.32 \\
& =0.1489488922 \\
& \approx 0.149 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

To find the pressure difference between the throat and entrance sections ($P_{1}-P_{2}$):
Recall that,

$$
\begin{aligned}
& \mathrm{h}=\left(\frac{\mathrm{P}_{1}}{w}-\frac{P_{2}}{w}\right)+\left(z_{1}-z_{2}\right)=3.53 \\
& \text { And, } \\
& \mathrm{Z}_{2}-\mathrm{Z}_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m} \\
& 3.53=\left(\frac{\mathrm{P}_{1}}{w}-\frac{P_{2}}{w}\right)-0.3 \\
& 3.53+0.3=\left(\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{w}\right) \\
& 3.83=\left(\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{w}\right) \\
& \mathrm{P}_{1}-\mathrm{P}_{2}=3.83 \times(9.81 \times 0.9 \times 1000)=33815.07 \approx 33.8 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

