NAME:

MATRIC NO:

DEPARTMENT:
COURSE CODE:
COURSE TITLE:

SAMPSON SOPHIA

19/ENGO8/009

BIOMEDICAL ENGINEERING
ENG 214
FLUID MECHANICS

QUESTIONS

QUESTION 1

A 300 mm X 150 mm venturimeter is provided in a vertical pipeline carrying oil of specific gravity 0.9 , flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 300 mm . The differential U-rube mercury manometer shows a gauge deflection of 250 mm . Calculate: (I) The discharge of oil, and (ii) The pressure difference between the entrance section and of the throat section. Take $\mathrm{Cd}=0.98$ and specific gravity of mercury as 13.6.

QUESTION 2

A vertical venturimeter carries a liquid of relative density 0.8 and has inlet and throat diameters of 150 mm and 75 mm respectively. The pressure connection at the throat is 150 mm above that at the inlet. If the actual flow rate of flow is 40 litres $/ \mathrm{sec}$ and the $\mathrm{C}_{\mathrm{d}}=0.96$, calculate the pressure difference between inlet and throat in $\mathrm{N} / \mathrm{m}^{2}$.

Name: Sampson Sophia
Matric no: 19/ ENG $08 / 009$
Department: Biomedical Engineering
Question 1
Given;
Diameter at islet $=300 \mathrm{~mm} \quad$ Diameter at throat $=150 \mathrm{~mm}$

$$
\begin{aligned}
\text { Area at inlet } & =\frac{\pi d^{2}}{4} & \text { Area at throat } & =\frac{\pi d^{2}}{4} \\
& =\frac{\pi \times(300)^{2}}{4} & & =\frac{\pi \times(150)^{2}}{4} \\
& =70685.83471 & & =17611.45868 \\
& =7.0685 \times 10^{4} \mathrm{~mm}^{2} & & =1.7671 \times 10^{4} \mathrm{~mm}^{2} \\
& =7.0686 \times 10^{-2} \mathrm{~m}^{2} & & =1.7671 \times 10^{-2} \mathrm{~m}^{2}
\end{aligned}
$$

Inlet will be section 1 and Throat will be section 2 .
Then, $z_{2}-z_{1}=300 \mathrm{~mm}=300 \times 10^{-3} \mathrm{~m}=0.3 \mathrm{~m}$
specific gravity of oil $=0.9$
Specific gravity of mercury $=13.6$
Manometer reading $=250 \mathrm{~mm}=0.25 \mathrm{~m}$

$$
e d=0.98
$$

$$
\text { Differential head, } \left.\begin{array}{rl}
h & =\left(\frac{P_{1}}{P_{g}}+z_{1}\right) \\
=x\left[\frac{S_{m}}{S_{0}}-1\right] & =0.25\left[\frac{P_{2}}{P_{g}}+z_{2}\right) \\
& =0.6 \\
0.9
\end{array}\right]
$$

Discharge of oil, $Q=C d \times \frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}{ }^{2}}} \times \sqrt{2 g^{h}}$

$$
\begin{gathered}
=0.98 \times\left(7.0686 \times 10^{-2} \times 1.7671 \times 10^{-2}\right) \\
\sqrt{\left(7.0686 \times 10^{-2}\right)^{2}-\left(1.7671 \times 10^{-2}\right)^{2}} \\
\times \sqrt{2 \times 9.81 \times 3.525} \\
=0.98 \times 0.01825 \times 8.3163=0.14874=0.1488 \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
$$

ii. The pressure difference

$$
\begin{gathered}
\left(p_{1}-p_{2}\right)=? \\
h=\left(\frac{p_{1}}{p_{g}}+z_{1}\right)-\left(\frac{p_{2}}{p_{g}}+z_{2}\right)=3.525 \\
\text { So }\left(\frac{p_{1}}{p_{g}}-\frac{p_{2}}{p_{g}}\right)+z_{1}-z_{2}=3.525 \\
\frac{p_{1}}{p_{g}}-\frac{p_{2}}{p_{g}}-z_{1}=0.3 \mathrm{~m} \\
\frac{p_{1}}{p_{g}}-\frac{p_{2}}{p_{g}}
\end{gathered}=3.525+0.3=3.825 \mathrm{~m} .525 .
$$

Question 2
Given,
Diameter of inlet $=150 \mathrm{~mm} \quad$ Diameter of throat $=75 \mathrm{~mm}$

$$
\begin{array}{rlrl}
& =0.15 \mathrm{~m} & =0.075 \mathrm{~m} \\
\text { Area of inlet } & =\frac{\pi d^{2}}{4} & \text { Area of throat } & =\frac{\pi d^{2}}{4} \\
& =\frac{\pi \times(0.15)^{2}}{4} \\
& =0.61767 \\
& =1.767 \times 10^{-2} \mathrm{~m}^{2} & & =\frac{\pi \times(0.075)^{2}}{4} \\
& =4.418 \times 10^{-3} \mathrm{~m}^{2}
\end{array}
$$

$$
\begin{array}{|ll}
\text { Flow rate }=40 \text { litres } / \mathrm{sec}= & (p-p)=? \\
C d=0.96 & \text { Relative density }=0.8
\end{array}
$$

$$
\begin{gathered}
Z_{2}-Z_{1}=150 \mathrm{~mm}=0.15 \mathrm{~m} \\
\frac{P_{1}}{P_{g}}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{P_{g}}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
\frac{V_{2}^{2}-V_{1}^{2}}{2 g}=\frac{P_{1}-P_{2}}{P_{g}}-\left(z_{2}-z_{1}\right) \\
\frac{V_{2}^{2}-V_{1}^{2}}{2 g}=\frac{P_{1}-P_{2}}{P g}-(0.15) \\
A_{1} V_{1}=A_{2} V_{2} \\
\frac{V_{2}}{V_{1}}=\frac{A_{1}}{A_{2}}=\frac{0.15}{0.075}=2 \\
\frac{V_{2}}{V_{1}}=(2)^{2}=4 \\
V_{2} / V_{1}=4 \\
\frac{V_{1}}{}=V_{2} / 4 \\
\frac{V_{2}^{2}}{32 g}-\frac{V_{2}^{2} / 16}{2 g}=\frac{P_{1}-P_{2}}{P_{g}}-0.15 \\
\frac{V_{2}}{P_{g}}=-0.15 \\
\frac{V_{2}}{152 g}\left[\frac{P_{1}-P_{2}}{P_{g}}-0.15\right]
\end{gathered}
$$

Discharge, $Q=C d \times V_{2} \times A_{2}$

$$
\begin{aligned}
0.4 & =0.96 \times \sqrt{\frac{32 \times 9.81}{15}\left[\frac{P_{1}-P_{2}}{P g}-0.15\right]} \times \pi \times \frac{(0.075)^{2}}{4} \\
P_{1}-P_{2} & =33820 \mathrm{~N} / \mathrm{m}^{2} \\
& =33.82 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

