NAME: AWALA DIVINE PAUL MATRIC NO: 19/ENG05/016 DEPARTMENT: MECHATRONICS ENGINEERING. COURSE: CHM 102

COVID-19 HOLIDAY ASSIGNMENT

Question 1

Name the functional groups present in each of the following molecules (*i*) CH₂ = C(OH)HCHO (*ii*) C₆H₅CH(NH₂)COCH₃ (*iii*) CH₃C = CHCH(OH)CHO

SOLUTION

S/NO	Organic Compound	Functional Groups
<i>(i)</i>		Aldehyde or
		Alkanal(Carbonyl)group;
	$CH_2 = C(OH)HCHO$	Alkanol(Hydroxyl)group;
		Alkene(double bond)
		group.
<i>(ii)</i>		Ketone or
	C ₆ H ₅ CH(NH ₂)COCH ₃	Alkanone(Carbonyl)group;
		Amine group
(iii)		Aldehyde or
		Alkanal(Carbonyl)group;
	$CH_3C = CHCH(OH)CHO$	Alkanol(Hydroxyl)group;
		Alkene(double bond)
		group.

Question 2

A 0.856 g sample of pure (2R, 3R)-tartaric acid was diluted 10 cm³ with water and placed in a 1.0 dm polarimeter tube. The observed rotation at 20° C was +1.0^{\circ}. Calculate the specific rotation of (2R, 3R)-tartaric acid.

SOLUTION

Using, Specific Rotation = $[\alpha]_{\lambda}^{T} = \frac{\alpha}{c \times l}$ Where c = concentration (g/ml) = 0.0856 g/ml l = path length (dm) = 1.0 dm $[\alpha]$ = specific rotation (0) = ? α = observed rotation (0) = 1.0 0 T = temperature = 20 0 C λ = wavelength of light Concentration of pure (2R, 3R)- tartaric acid is; 10 ml of solution contains 0.856 g of tartaric acid Then 1 ml of colution

Then 1 ml of solution would contain;

$$= \frac{1 \, ml \, \times \, 0.856 \, g}{10 \, ml}$$

= 0.0856 g ml⁻¹
$$[\alpha]_{\lambda}^{20} = \frac{1.0}{0.0856 \, \times \, 1.0}$$

$$= \frac{1.0}{0.0856}$$

= +11.68⁰

Question 3

Draw the possible geometric isomers (where possible) for each of the following compounds:

- (i) Hexa 2, 4 diene
- (*ii*) 2, 3 dimethylbut 2 ene

SOLUTION

(i) Hexa - 2, 4 - diene

(*ii*)
$$2, 3 - dimethylbut - 2 - ene$$

$$\begin{array}{cccc}
H & CH_{3}H \\
| & | & | \\
H - C - C = C - C - H \\
| & | & | \\
H & CH_{3} & H
\end{array}$$