NAME: AWALA DIVINE PAUL
MATRIC N0: 19/ENG05/016
DEPARTMENT: MECHATRONICS ENGINEERING.
COURSE: CHM 102

COVID-19 HOLIDAY ASSIGNMENT

Question 1

Name the functional groups present in each of the following molecules
(i) $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COCH}_{3}$
(iii) $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$

SOLUTION

S/NO	Organic Compound	Functional Groups
(i)		Aldehyde or Alkanal(Carbonyl)group; Alkanol(Hydroxyl)group; Alkene(double bond) group.
(ii)	$\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$	Ketone or Alkanone(Carbonyl)group; Amine group
(iii)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COCH}_{3}$	Aldehyde or Alkanal(Carbonyl)group; Alkanol(Hydroxyl)group; Alkene(double bond) group.

Question 2

A 0.856 g sample of pure ($2 \mathrm{R}, 3 \mathrm{R}$)-tartaric acid was diluted $10 \mathrm{~cm}^{3}$ with water and placed in a 1.0 dm polarimeter tube. The observed rotation at $20^{\circ} \mathrm{C}$ was $+1.0^{\circ}$. Calculate the specific rotation of ($2 \mathrm{R}, 3 \mathrm{R}$)tartaric acid.

SOLUTION

Using,
Specific Rotation $=[\alpha]_{\lambda}^{T}=\frac{\alpha}{c \times l}$
Where $c=$ concentration $(\mathrm{g} / \mathrm{ml})=0.0856 \mathrm{~g} / \mathrm{ml}$
$l=$ path length $(\mathrm{dm})=1.0 \mathrm{dm}$
$[\alpha]=$ specific rotation $\left({ }^{0}\right)=$?
$\propto=$ observed rotation $\left({ }^{0}\right)=1.0^{0}$
$\mathrm{T}=$ temperature $=20^{\circ} \mathrm{C}$
$\lambda=$ wavelength of light
Concentration of pure ($2 \mathrm{R}, 3 \mathrm{R}$)- tartaric acid is;
10 ml of solution contains 0.856 g of tartaric acid
Then 1 ml of solution would contain;

$$
\begin{aligned}
& =\frac{1 \mathrm{ml} \times 0.856 \mathrm{~g}}{10 \mathrm{ml}} \\
& =0.0856 \mathrm{~g} \mathrm{ml}^{-1} \\
{[\alpha]_{\lambda}^{20} } & =\frac{1.0}{0.0856 \times 1.0} \\
& =\frac{1.0}{0.0856} \\
& =+11.68^{0}
\end{aligned}
$$

Question 3

Draw the possible geometric isomers (where possible) for each of the following compounds:
(i) Hexa - 2, 4-diene
(ii) 2, 3 - dimethylbut - 2 - ene

SOLUTION

(i) Hexa - 2, 4-diene

(a)

(c)

(b)

(d)
(ii) 2, 3-dimethylbut - 2 - ene

(a)

(b)

(c)

