FAGBAMILA DAVID

ASSIGNMENT 2: VENTURIMETER

22nd April 2020

QUESTION I

1. Diameter at Inlet $D_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m}$
2. Area of inlet, $A_{l}=p i / 4 * 0.3^{2}=0.07 \mathrm{~m}^{2}$
3. Diameter at throat, $\mathrm{D}_{2}=150 \mathrm{~mm}=0.15 \mathrm{~m}$
4. Area at throat, $\mathrm{A}_{2}=p i / 4 * 0.15^{2}=0.01767 \mathrm{~m}^{2}$
A. Specific gravity of heavy liquid (mercury) in U-tube manometer $S_{h l}=13.6$

Specific gravity of liquid (oil) flowing through pipe, $S_{p}=0.9$
Reading of differential manometer, $y=250 \mathrm{~mm}=0.25 \mathrm{~m}$

The differential ' h ' is given by:
$h=\left(p_{1} / w+z_{1}\right)-\left(p_{2} / w+z_{2}\right)$
$=y\left(S_{h} / s_{y}-1\right)=0.25(13.6 / 0.9-1)$
$=3.53 \mathrm{~m}$ of oil

Discharge of oil, Q :

Using the relation $Q=C_{d}{ }^{*} A_{1} A_{2} /$ sqrt $A_{1} 2-A_{2} 2{ }^{*} 2 g h$

$$
\begin{aligned}
& Q=0.98 * 0.07 * 0.01767 / \operatorname{sqrt}(0.072-0.017672) * \operatorname{sqrt}(2 * 9.81 * 3.53) \\
& Q=0.1489 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

B. $p_{1}-p_{2}$

We know that $p_{1} / w-p_{2} / w+(z 1-z 2)=3.53$

But $z_{2}-z_{1}=0.3 m$

Therefore $p_{1}-p_{2} / w=3.83$
$p_{1}-p_{2}=\left(9.81^{*} 0.9\right)^{*} 3.83=33.8 \mathrm{kN} / \mathrm{m}^{2}$

QUESTION 2

$A_{l}=p i / 4 D_{1}^{2}=0.01767 \mathrm{~m}^{2}$
$A_{2}=p i / 4 D_{2}^{2}=0.00442 \mathrm{~m}^{2}$
$Q_{\text {act }}=C_{d}{ }^{*} A_{1} A_{2} /$ sgrt $A_{1}{ }^{2}-A_{2} 2^{*}$ sqrt 2 gh

From this we get
$0.04=0.96^{*} 0.004565^{*} 4.429$ sgrt (h)
therefore $h=\left(0.04 / 0.96^{*} 0.004565^{*} 4.429\right)^{2}=4.247 \mathrm{~m}$

$$
\begin{aligned}
& 4.427=p_{1} / \omega-p_{2} / \omega+(21-22) \\
& \left(p_{1}-p_{2} / p_{1}\right)-0.15 \\
& \left(p_{1}-p_{2}\right)=p_{g}(4.247+0.15) \\
& =(0.8 * 1000 * 9.81)(4.247+0.15) \mathrm{N} / \mathrm{m}^{2}=34.51 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

