Name: Alkali Alheri
Marric No:19| MHso1/086
Page 1

1) $\mathrm{CH}_{3} \mathrm{OCH}_{3} \rightarrow$ methoxymetrane
2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3} \rightarrow$ Ethoxyethane -
ivi) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3} \longrightarrow$ merao $x y$ etaane
i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3} \rightarrow$ Ethoxypropane
3) properties of Ethers Inclede:
4) physical staine: At room temperainure, ethers are Colou-less neutral liguid coftr pleasant pdowrs. The looe'r aliphaña etaers are aighly flammable gases or Holatite liguids.
5) Solubitify: ptaers are less soluble in couter thon are correspondring alcohols. lower molecular weighi- etaers such as metho xymetaane are faorly soluble on coater.
ii) Densify: Most of the Simple efaers are less done than water actaough tae density Increases wh increasing relañue melecular moss and Some of the aromaitic etaers are in face denser than water.
6) Boiting potní: Low molecular mass etaers have a lower boiting poini than the corresponding akohols bit thare jethers Containning alkylradikals larger than four carbon airoms, the reverse is trale.
v) Reacīnity: EfGers are Gueri aì moderaìe lempera fure. Theor lneriness à moderaie temperatures lead fo theor wide use as reacion media.

Preparation of tEthers -

1) Partial dehydrailon of alcohols: Simple etchers an manufactured from alcohols by catalytic delyeth The alcohol in excess and concentrated fetraox en, plate (VI) acted is heated at a carefully maintained femperañire at $\mathrm{C} 40^{\circ} \mathrm{C}$. Tais process is known as contrinous Etherificaition. If excess alcohol is not used the femperañire is as high as $1 T O-180^{\circ} \mathrm{C}$, further dehydration to gree alkene occurs.

$$
\left\lvert\, \begin{aligned}
& 2 \mathrm{ROH} \\
& \left.\operatorname{erg} 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2} \text { Conc } \mathrm{H}_{2} \mathrm{HO}_{4} / 140^{\circ} \mathrm{C} 0^{\circ} \mathrm{C} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{R}+\mathrm{CH}_{4}\right) \\
& \mathrm{CH}_{3}+\mathrm{HF}_{2} \mathrm{O}
\end{aligned}\right.
$$

- Controlled catalytic dehydration of o befons.

$$
\left.2 \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CCH}_{3}\right)_{2} \mathrm{CH} \text { - o-CHCCHH}
$$

$$
2 \text { - } 150 \text { pro pox propane. }
$$

f) uses of Ethylene oxide

1) Ethylene oxide is used as an Iniermediaie on the hydrolyte manufacture of ethylene glycol
iii) Efluglene oxide is used in the preparation of non conic emulsifying agent, plastics placticizers and several synthetic textite's.
Ethylene oxide is used as a gaseous sterilizing agent.
