SAM-BOMS FORTUNE.C.

16/ENG07/033

PETROLEUM ENGINEERING

PTE 516

1. SUMMARY ON ALL THE HORIZONTAL MULTIPHASE FLOW REGIMES

Two-phase flow in horizontal pipes differs markedly from that in vertical pipes; except for the Beggs and Brill correlation (Beggs and Brill 1973), which can be applied for any flow direction, completely different correlations are used for horizontal flow than for vertical flow. Flow regimes in horizontal gas-liquid flow is considered.

FLOW REGIMES

The flow regime does not significantly affect the pressure drop in horizontal flow as it does in vertical flow. This is because there is no potential energy contribution to the pressure drop in horizontal flow.

The commonly described flow regimes in horizontal gas-liquid flow are classified into three types of regimes:

A. SEGREGATED FLOW (the two phases are for the most part separate): It is classified as being stratified smooth, stratified wavy or annular. Stratified smooth flow consists of liquid flowing along the bottom of the pipe and gas flowing along the top of the pipe, with a smooth interface between the phases. This flow regime occurs at relatively low rates of both phases. At higher gas rates, the interface becomes wavy, and stratified wavy flow results.

B. INTERMITTENT FLOW (gas and liquid are alternating): They are slug flow and plug (elongated bubble) flow. Slug flow consists of large liquid slugs alternating with high-velocity bubbles of gas that fill almost the entire pipe. In plug flow, large gas bubbles flow along the top of the pipe, which is otherwise filled with liquid.

C. DISTRIBUTIVE FLOW (one phase is dispersed in the other phase): This flow regime includes bubble, dispersed bubble, mist, and froth flow. The bubble flow regimes differ from the vertical flow in that the gas bubbles in a horizontal flow will be concentrated on the upper side of the pipe. Mist flow occurs at high gas rates and low liquid rates and consists of gas with liquid droplets entrained. Mist flow will often be indistinguishable from annular flow, and many flow regime maps use "annular mist" to denote both of these regimes. Froth flow is used by some authors to describe the mist or annular mist flow regime.

4. SUMMARY ON FLOW THROUGH RESTRICTION ON BOTH SINGLE-PHASE LIQUID FLOW AND SINGLE-PHASE GAS FLOW

The flow rate from almost all flowing wells is controlled with a wellhead choke, a device that places a restriction in the flow line. A variety of factors may make it desirable to restrict the production rate from a flowing well, including the prevention of coning or sand production, satisfying production rate limits set by regulatory authorities, and meeting limitations of rate or pressure imposed by surface equipment.

A. SINGLE-PHASE LIQUID FLOW: The flow through a wellhead choke will rarely consist of single-phase liquid, since the flowing tubing pressure is almost always below the bubble point. However, when this does occur, the flow rate is related to the pressure drop across the choke by

$$q = CA \sqrt{\frac{2g_c \Delta p}{\rho}}$$

Where C =flow coefficient of choke

A = cross-sectional area of choke

The above equation is derived by assuming that the pressure drop through the choke is equal to the kinetic energy pressure drop divided by the square of a drag coefficient. This equation applies for subcritical flow, which will usually be the case for single-phase liquid phase.

B. SINGLE PHASE GAS FLOW: When a compressible fluid passes through a restriction, the expansion of the fluid is an important factor. For isentropic flow of an ideal gas through a choke, the rate is related to the pressure ratio, p_2/p_1

$$q_g = \frac{\pi}{4} D^2 \cdot_2 p_1 \frac{T_{sc}}{P_{sc}} \sqrt{\left(\frac{2g_c R}{28.97\gamma_g T_1}\right) \left(\frac{\gamma}{\gamma - 1}\right) \left[\left(\frac{p_2}{p_1}\right)^2 - \left(\frac{p_2}{p_1}\right)^{\frac{(\gamma + 1)}{\gamma}}\right]}$$

Which can be expressed in oilfield units as

$$q_g = 3.505D^2 \cdot_{64} \left(\frac{p_1}{p_{sc}}\right) \alpha \sqrt{\left(\frac{1}{\gamma_g T_1}\right) \left(\frac{\gamma}{\gamma - 1}\right) \left[\left(\frac{p_2}{p_1}\right)^2 - \left(\frac{p_2}{p_1}\right)^{\frac{(\gamma + 1)}{\gamma}}\right]}$$

Where qg is in MSCF/d, D64 is the choke diameter (bean diameter) in 64ths of inches, T1 is the temperature upstream of the choke in oR, γ is the heat capacity ratio, Cp/Cv, α is the flow coefficient of the choke, γ g is the gas gravity, psc is standard pressure, and p₁ and p₂ are the pressure upstream and downstream of the choke, respectively.

The above equations apply when the pressure ratio is equal to or greater than the critical pressure ratio, given by

$$\left(\frac{p_2}{p_1}\right) = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$

When the pressure ratio is less than the critical pressure ratio, p_2/p_1 should be set to (p_2/p_1) c and the equation above used, since the flow rate insensitive to the downstream pressure whenever the flow is critical. For air and other diatomic gases, γ is approximately 1.4, and the critical pressure ratio is 0.53; in petroleum engineering operations, it is commonly assumed that flow through a choke is critical whenever the downstream pressure is less than about half of the upstream pressure.

QUESTION 2 & 3

Sam-Boms Fortune. C.	and the second s
16 ENG 07 033	
Petroleum Engineering	CPICE-OX CEDED. O
PTE 516	21 27 27 27 2 1 2
Assignment	X LAX K PX 10 = pd
Question 10-4	AD
Parameters: 91= 500 bb1/d	$T_{PC} = 395$ °R
GOR = 1000 SCf / 661	PPC= 667 PSi
O = 20 dynes / Cm	fgz?
$T = 120^{\circ} f = 580^{\circ} R$	Q L = ?
P= 1000 Psig	Mg = 0.0131
$7 = f(\frac{580}{395}, \frac{100}{395})$	°/667) = 0.85
$\mathcal{X} = 22^{\circ} A P I$	e (et a man) (and) a lass a
$V_0 = 3271$	and all all and a
$\partial g = 0.71$	relate to draw and
Dz2 Inches	P. 9.9
$\mu_L = 2.0CP$	
	11 - M. C. 2. 4/2 / 13
620 - 0	
GUR- 4g	12 C3 C3 14 1490
91	
99 = GOR X9L	1 100 100
9. Z 1000 X 500	190.
$\int \int \int \nabla \nabla x (r^3 (t^3))$	
1 10 = 500 KIU FL 12	I all a second and a second and a second a secon

93 = GOR × 92 93 = GOR × 92 93 = 1000 × 500 93 = 500 × 103 ft 3/0 Baker's Corrolation $A = (\pi/4) (2/12)^{3}$ $A = 0.02182 \text{ ft}^{2}$ $J_{g} = \frac{28 \cdot 97 \, \% \, P}{2RT}$ $I_{g} = \frac{28 \cdot 97 \, \times 0.71 \, \times 1000}{0.85 \, \times 10.73 \, \times 580}$ $= 3 \cdot 89 \, 1 \, \text{bm} \, 1 \, \text{ft}^{3}$ $\delta_0 = 141.5 = 0.865$ 32+131.5 $R_0 = 0.865 \times 62.4$ $l_{0} = 5415m | ft^{3}$

USL= 91 2 500 × 5.615 A 86400 X0.02182 = 1.4892 ft 15 $U_{Sg} = \frac{4}{\pi D^2} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{7} \times \frac{1}{P_{SC}} \times \frac{1}{P_{SC}}$ $U_{59} = \frac{4}{\pi} \left(\frac{2}{10}\right)^2 \times \frac{500000}{86400} \times 0.85 \times \frac{580}{520} \times \frac{14.7}{1000}$ 520 1000 Usg = 3.697 ft 15 $N = \left(\begin{array}{c} l_g \\ 0.075 \end{array} \right) \left(\begin{array}{c} l_L \\ 62.4 \end{array} \right) \left[\begin{array}{c} 1\\ 2 \end{array} \right]^{1/2}$ $\lambda = \left(\begin{array}{c} 3 \cdot \overline{39} \\ 0 \cdot 075 \end{array}\right) \left(\begin{array}{c} 54 \\ 62 \cdot 4 \end{array}\right)^{-1}$ 112 $\lambda = 6.6996$ Ø= 5.064

Ø= 5.064 Qg = Usg × lg = 3.697 × 3.89 × 3600 25.1773 × 104 QL= YSLX RL z 1.4892×54×3600 z 2.895×105 Qg = 5.1773 × 104 6.6996 = 7.728 ×10° QLAD Z 2.895 X105 X 6.6996 X 5.064 Qg 5.1773 X 10⁴ = 189-71

Slug frow (1.e frow is a function of Gy/N, Quint from Baker's map) Mandhane Flow = (USL, Usg) USL = 1.4892 ft 15 Usg = 3.697 ft 15 From Mandhane flow map; Flow regime = slug flow is flow regime is slug flow Bog's and Brills Flow= f (NFR, AL) NFR=Um2 9D Um = Usg + UsL Um = 1.4892 + 3.697 = 5.1862 ftls $g = 32 \cdot 17 ft / sec^2$ $D = (^2/12) ft$

Flow = (Ush, Usg) Mandhane USL = 1.4892 ft 15 Us1 = 3.697 ft.15 From Mandhane flow map; Flow regime = slug flow is flow regime is slug flow Bogg's and Brills TION = f (NTP, XL) NFR=UM2 9D Um = Usg + UsL Um = 1.4892 + 3.697 = 5.1862 ft15 $g = 32 \cdot 17 ft | sec^{2}$ D = (21)2 ft $N_{FF} = 5.1862^2 = 5.0165$ 32.17 × $^{2}/12$ $N = U_{52} = 1.4892$ Ust + Usg 1.4892 + 3.697 AL= 0.287 Flow regime = Intermittent

	Question 10-6	A p 21 cont 31 well mis
	Parameters: 90=4000661	80 = 32° AP1
-	GOR = 500 scf / 661	8/2 = 0.71
	D=3 inches	ML=209
	ê=0.001	Mg = 0.01310P
-	$T = 150^{\circ} T = 610^{\circ} R$	TPC= 395°R
-	P=200 Psia	Ppcz 667psi
3	OLE20 dynes Cm	Marshace that must
	to all provide in a stand to as	13 and the surface
	Derived parameters	
+	$Z = f(\frac{610}{395}, \frac{100}{667} = 0.97$	shine has
	A= (1/4) (3/12) = 0.0491 ft	and have been all and
-	00 = 141.5 = = 20.8654	my and
	30 + 131.5	and the second s
1	lo = 0.565 x 62.4 = 34 16m ft3	
	la= 28.97 89P	
	TRT T	
	208.97 4 0.71 4 0.00	
	- 20° 11 × 0° 11 × 200	and the second se
-	0.97 × 10.13 × 610	
	2 0x 648 16m / ft ²	COLUCE SCOL
		and a figure of the second

lg = 28.97 JgP TRT = 28.97 × 0.71 × 200 0.97 × 10.73 × 610 2 0x 648 16m / ft 3 99 = GOR X 91 99 = 500 × 4000 = 2 × 10⁶ ft³ 12 Beggs and Brill Mothod Flow Regime calculation: USL = 91 Z 4000 × 5.615 A \$6400 X0.0491 25.2944 ft / s Usg z 4 × 9 × Z × (T) × (Psc TD² (Tsc) (P $\frac{24}{\pi (3/12)^2} \times \frac{2\times10^6 \times 0.97 \times 610 \times 14.7}{86400}$ Usg = 39.4395 ft 15

Questo a could	
$U_{m} = U_{m} + U_{m}$	
= 39. 4395 + 5. 2944	
= 44.7339	
λ = <u>5.2944</u>	
44.7339	
=0.11835	
$N_{FR} = U_{m} = 44 \cdot 1331$	and the state of
Jo Sant A	28911 D =
1 216 × (2.11825) ^{0.302} =165.876	
Li = 516 × (0.11035) 2.4684 = 0.1795	
$L_{2} = 0.000 [235 (0.1835) - 1.4516 - 2.215]$	
Lg=01 (0.11035) - 5.738 - 104 0 23: 273	
142015(011030) 2)00	
- in Marshunder since hi sort and	
Flow is distributive smile ht	DOTO NO. LANGING
Hold-up colculation	
11/	

Hold - UP COICULOATON y1 = 40 4 4= ghe y₁₀ = 1.065 × (0.11835)^{0.5824} 248.818 ^{0.0609} Yeo = Q. 3073 = 0.21961 1.3993 Note: N= 1- 2g Rm = Pili + lglg lm= (54×0.11835) + (0.648×0.88165) lm = 6.962216m/ft3 Mm= MLAL + MgAg z (2×0·11835) + (0·0131×0·88/65) 2 0. 24825

NRen = lm um) = 6.9622 × 44.7339 × 3/12 Mm 6.72×10-4×0.24825 Nem = 934.3391 2.002×10-3 NRom = 466, 728.96 n 4.7×105 Fn = 0.006 calculating for X, S, fip a= AL = 0.11835 40° 0.219612 = 2.434 S= 19 (2) (-0.523+3.182 In (x) - 0.8725 [In (x)] + 10.01853 [In (x) +] 5 2 0.89772 2.8042-0.7031 +0.012 5 = 0.89772 = 0.4248 0.1131 Ftp= Fne ftp = 0.006 x e. 4248 ftp = 9.1757 x 10-3

Fip= fne fip = 0.006 × 2. 4248 fip = 9.1757 × 10-3 = 0.009176 Eaton correlation Conculation of mass flow rate mL=qLLL $q_{L} = 4000 \text{ bbl} \times 5.615 \text{ ft}^{3}$ d 86400 s91=0.26ft315 $\dot{m}_{L} = 0.26 ft^{3} / 5 \times 54 lbm / ft^{3}$ =14.038 1bm 15 ring = 29lg

$$\begin{array}{c} 2g = A \times U_{33} \\ = 0 \cdot 0491 \times 39 \cdot 4395 = 1.936 \\ \hline mg = Egl_g \\ = 1.936 \times 0.648 = 1.255 \ 1bm/s \\ \hline mm = m_L + m_g = 14 \cdot 038 + 1.255 \\ = 15 \cdot 2.93 \ 1bm/s \\ \hline mm = m_L + m_g = 14 \cdot 038 + 1.255 \\ = 15 \cdot 2.93 \ 1bm/s \\ \hline mm = 0 \cdot 0131 \times 6 \cdot 72 \times 10^{-4} \\ = 8 \cdot 8 \times 10^{-6} \ 1bm/f + -sec \\ \hline Duckler \ correlation \\ dp = (dp) + (dp) \\ ds \ (ds/\pi) \ (dp) = fl_K um^2 \\ (ds/\pi) \ (ds/\pi) \ (dp) = fl_K um^2 \\ (ds/\pi) \ (ds/\pi) \ (dp) = 2 \int fl_K um^2 \\ (ds/\pi) \ (ds/\pi) \ (ds/\pi) \ (dp) = 2 \int fl_K um^2 \\ (ds/\pi) \ (ds/\pi) \ (ds/\pi) \ (dp) = 2 \int fl_K um^2 \\ (ds/\pi) \ ($$

Frictional pressure drop; (de) = flx um dat 2gcD lx = le 12 + lg 2g2 and NREK = lk UmD = NREM 2x lon 4m Assuming $\lambda_L = Y_L$ $l_R = l_m$ NRON = NRek AL = 4L = 0.11835 + 0.648 × 0.88165 lx= 54×0.118352 0.88165 0.11835 lx = 6.96215m 1 ft NREF = 4.7 × 10⁵ $(\frac{6.962}{6.962})$ NPEK = 4.7 × 10⁵

fn = 0.0056 + 0.5 (Neer) - 0.32 = 0.0056 + 0.5 (4.7 × 105) - 0.32 = 0.013 $\frac{\ln \lambda_{L}}{\left[1\cdot 281 + 0.478(\ln \lambda_{L}) + 0.444(\ln \lambda_{L})^{2} + 0.094(\ln \lambda_{L})^{3} + 0.00843(\ln \lambda_{L})^{4}\right]}$ £=1-1 fn f=1- (-2.13411 L1.281-1.0201+2.0222-0.9136+0.1749_ fo $f_{f_0} = 1 - (-1.3818)$ $f_{f_0} = 2.3818$ f = fn x 2.3818 f= D.013 x 2.3818 F=0.031 (dP/da) = flx 402 2gcD = 0.013 × 6.962 × 44.73392 2× 32.17×0.25 = 11.26 16f / ft3 1- 0.078 psil ft calculating f $\frac{(0.057)(m_g m_m)^{0.5}}{M_g D^{2.25}} = \frac{0.057 \times (1.255 \times 15.293)^{0.5}}{8.8 \times 10^{-6} (3/12)^{2.25}}$ MgD^{2'25} = 0.24971 = 6.42×105

 $= 0.057 \times (1.255 \times 15.293)^{0.5}$ 8.8 × 10⁻⁶ (³/12)^{2.25} calculating f (0.057) (mg mm) 0.5 MgD^{2.25} = 6.42×105 = 0.24971_ 3.8891 × 10-7 From figure 10.6 : f (m/mm) 0.1 = 0.02 $f = 0.02 \\ (\frac{14.039}{15.293})^{0.1}$ = 0.0202 $\frac{dp}{dz}$ = $f l_m U_m^2$ $\frac{dz}{f}$ = 2900 = 0.0202 x 6.9622 x 44.73392 2 × 32.17 x (3/2) 2. 17.496 16f 1.ft3 20.122 ps: 1ft

Frictional Pressure gradient calculation $\left(\frac{dp}{dz}\right)_{f}^{2} = \frac{2f_{tp} R_{m} U_{m}^{2}}{g_{c} D}$ dp = 2 × 0. 009176 × 6.9622 × 44.73392 de 32.17 × 3/12 dp = 31.792 16+1++s dz $\frac{dP}{d2} = 31 \cdot 792 \quad \frac{16f}{ft^3} \times \frac{1ft^2}{144 \, m^2}$ = 0.221ps; / ft.