NAME: SAMPSON SOPHIA

MATRIC NO: 19/ENG08/009

DEPARTMENT: BIOMEDICAL ENGINEERING

Name: Sampson Sophia Matric no: 19/ENG08/009 Department: Biomedical Engineering V= 1. V= (4t-3t2) m/s To find position, we integrate velocity ds = vdt $\int V dt = \int_{0}^{t} (4t - 3t^2)$ $als = \frac{4t^2 - 3t^3}{2} + c$ $ds = 2t^2 - t^3 + c$ 8=0 when t=0 8=2t2-t3+c $c = s - 2t^{2} + t^{3}$ = 0 - 2(0)2+(0)3 = 0-0+0 C=0 S = ? when t = 4 $s = 2t^2 - t^3 + 0$ $3 = 2(4)^2 - (4)^3$ = 32-64 S= -32 The position is 32m in the opposite direction $v = (0.5t^3 - 8t)m/s$ 2. To find accelerate, differentiate velocity a= dv/at a= dw = 1.5t2_8 dt when t=2 9= 1.5(2)2-8 $= -2m/s^2$ = 2m/s² in the opposite direction

$a = (4t^2 - 2)m/s^2$	
3. a= (At-2) m/s velocity is gotten by integrating acceleration	
v= Jadt	1
$V = \int (4t^2 - 2)$	
$V = \int C T r = -2$	
$= \frac{4t^3 - 2t}{3} + C$	
$v = 4t^3 - 2t + c$	
3	
s is integration of v	
$v = 4t^3 - 2t + C_v$	
3	
$S = \int \left(\frac{4t^3}{3} - 2t + Cv\right) dt$	
$S = \frac{4t^4}{4x^3} - \frac{2t^2}{2} + \frac{1}{2}cv + \frac{1}{2}cs$	1
4 X 3 2	
	-
at t=0, s=-2m	
When $t=0$	
$-2 = 4(0)^{4} - 2(0)^{2} + 0(0) + Cs$	
12 2	
$C_{S} = -2$	
at $t = 2, s = -20m$	1
When $t+10$ t= 2	
$-20 = 4(2)^4 - 2(2)^2 + (2)(1 - 2)$	
$-20 = 4(2)^4 - 2(2)^2 + (2)(1 - 2)$ $12 \qquad 2$	
$-20 = \frac{16}{16} - 4 + 20x - 2$	
3	
$2C_V = -20 - 16 + 4 + 2$	
3	
2Cv = -19.33	
$C_v = -9.665$ $C_v = -9.67$	
	States and the second

At t=4	
$S = t^{4} - t^{2} - 9 - 9t - 2$	
3	
$= \frac{(4)^4}{3} - (4)^2 - 9.6\%(4) - 2$	
3	
S = 2800 28-7m	
4- V= (20-0.05 s2)m/s	
So = 0 Vo = 7	
V = 20-0,05(0) ²	
= 20-0	
= 20 m/s	
Vo = >	
MISTAKE	
4. V= (20-0.05s2)m/s	
g_{1} $v = ds/dt$ $q = dv/dt$	q = 16.875 - 30
dt - ds/y dt = dy/	= -13.125
dt = dt	a = 13.125 m/s² is
dS = dV	opposite direction
v a	
$a = v \cdot dv$	
ds	
V= (20-0.05s2)	
dv = -0.15	
de	
$a_{s} = (20 - 0.05s^{2}) \cdot -0.1s$	
$= -25 + (5 \times 10^{-3} S^3)$	
when $S = 15$	
$= -2(15) + 5 \times (0^{-3}(15)^{3})$	