Name: Geoffrey Chima Emeka David
Matric No: 18/eng02/041

Department: Computer Engineering

Course: Engineering Mechanics ii (ENG234)

Question (3)

(1) $\mathrm{A}=\left(4 t^{2}-2\right)$

$$
V=\int\left(4 t^{2}-2\right) d t
$$

$$
V=\frac{4}{3} t^{\wedge} 3-2 t+c 1
$$

(2) $\left.\mathrm{S}=\int \frac{4}{3} t^{3}-2 t+c 1\right) d t$

$$
\mathrm{S}=\frac{1}{3} t^{4}-\frac{2}{2} t^{2}+c 1+c 2
$$

- The position from the Velocity

$$
\begin{gathered}
\int_{0}^{s} d s=\int_{0}^{t}\left(4 t-3 t^{2}\right) d t \\
\mathrm{ds}=\int_{0}^{4}\left(4 t-3 t^{2}\right) d t \\
\mathrm{~s}=\left(4 \backslash 5 t^{\wedge} 2-3 / 3 \mathrm{t}^{\wedge} 3\right) \\
=2(4)^{2}-4^{3}-(0)-(0)
\end{gathered}
$$

$$
=-32
$$

$$
=32 \leftarrow
$$

Question (2)

$$
V=\left(0.5 t^{\wedge} 2-8 t\right)
$$

Find $=? \mathrm{t}=2 \mathrm{sec}$
To get the acceleration derivate Velocity

$$
\begin{aligned}
& \mathrm{A}\left.={ }^{d} 0.5 t^{3}-8 t\right) \\
& d t \\
&=\left(1.5 \mathrm{t}^{\wedge} 2-8\right) \\
& \mathrm{A}=1.5\left(2^{\wedge} 2\right)-8 \\
&=\mathbf{2 m} / \mathrm{s}^{2}
\end{aligned}
$$

function integration of v with respect to time (t).

$$
\begin{gathered}
\text { At } t=0, s=-2 \text { and } c 2=-2 \\
\text { At } t=2, s=-20 \text { and } c 1=-9.70 \\
\text { At } t=4
\end{gathered}
$$

Then: $\mathrm{S}(4)=\frac{1}{3}(4)^{4}-4^{2}+(-2)(4)+$
(-9.7)

$$
=\mathbf{2 8 . 7 \mathrm { m }}
$$

Question (4)

- Since the velocity express the position of the function.
Time can be express as $\mathrm{dt}=\frac{d v}{v}$
It can also as $\mathrm{dt}=\frac{d v}{q}$
- Equating eqn(1) and (2)

$$
\frac{d s}{v}=\frac{d v}{q}
$$

- We can express acceleration as

$$
\mathrm{A}=\frac{V d v}{d s}
$$

Velocity $=\left(20-0.05^{2}\right) d v$ can be written as
Dv $=-2.005 \mathrm{mds}$
Dv $=-0.1 \mathrm{ds}$

Replace v by $20-0.05^{2}$ and $d v$ by -0.1 ds in
$\mathrm{A}=\frac{\left(20-0.05 s^{2}\right) *(0,1 s) d s}{d s}$
$A=2 s+0.005 s^{3}$
In order to determine the acceleration at $\mathrm{s}=15$ we need to replace the valve of the expression $\mathrm{a}=2 \mathrm{~s}+0.005 \mathrm{~s}^{3}$

$$
A_{(s=15)}=2.15+0.0005 \times 15^{3}
$$

$=-13.125 \mathrm{~m} / \mathrm{s}^{2}$
Since motion is positive to the right acceleration vector is direction to the left.

$$
a_{(s=15)}=13.125 \mathrm{~m} / \mathrm{s}^{2} \leftarrow
$$

