
Aimuel Emmanuel
16/sci01/005

1) Concept of Operational Laws in 
Computer Systems- Operational 
laws are equations which may be 
used as an abstract 
representation of a model of the 
average behavior of any system. 
They are general and make no 
assumptions about the behavior 
of the random variable that 
characterize the system. Using 
these abstractions, these laws 
can be applied to any device and 
gradually build a more complex 
system.
2) Operational Laws
a) Littleʼs Law- Littleʼs Law is a 
theorem that determines the 
average number of items in a
stationary queuing system based 
on the average waiting time of an 
item within a system and the 
average number of items arriving 
at the system per unit of time.
The law provides a simple and 
intuitive approach for the 



assessment of the efficiency of 
queuing systems. The concept is 
hugely significant for business 
operations because it states that 
the number of items in the 
queuing systems primarily 
depends on two key variables, 
and it is not affected by other 
factors such as the distribution of 
the service or service order.
Littleʼs Law can only be used in 
queuing systems. In addition, the 
theorem can be applied in 
different fields, from running a 
small coffee shop to the 
maintenance of the operations of 
a military airbase.
Formula for Littleʼs Law
L=λxW
L – the average number of items 
in a queuing system
λ – the average number of items 
arriving at the system per unit of 
time W – the average waiting time 
an item spends in a queuing 
system
b) Space-Time Product Laws- it 
states that the throughput is 



equal to average amount of 
memory in use divided by average 
space-time product. Space-time 
products are often used to 
evaluate program performance 
and assign accounting charges to 
programs in virtual memory 
systems. Essentially, a programʼs 
space-time product is equal to its 
execution time multiplied by the 
average amount of money 
allocated to it during its 
execution. Since space-time 
products, response time, and 
throughput are all used as 
indicators of system performance, 
it is interesting to examine the 
manner in which these quantities 
are related.
c) Forced-Flow Law- The Forced-
Flow Law (FFL) relates 
throughputs at individual 
resources within a system to the 
overall system throughput. It is 
the average no of visits that a 
system level job makes to that 
resource. The general residence 
time law is the sum of the product 



of its average residence time at 
each resource and the number of 
visits it makes to that resource.
The Forced-Flow Law:
λk = V kλ.
The average arrival rate to 
resource k is the total system 
arrival rate times the expected 
number
of visits made to resource k. 
Because of the Conservation Law, 
we could also state the FFL in 
terms of output rates, Λ and Λk.

d) Conservation Law- What goes 
in must (normally) come out.
Consider a system with arrival 
rate of λ and an output rate of Λ. 
If the system is not overloaded 
and no customers are created or 
destroyed inside the system, then 
λ = Λ.
Creating customers in a system is 
called forking. Destroying 
customers is called joining. Itʼs 
possible to model systems with 
these behaviors, but usually 
difficult, so we wonʼt see any 



examples until the end of
class.
e) Utilisation Law- It states that, 
The utilization of a resource is 
equal to the product of the 
throughput of that resource and 
the average service requirement 
at that resource. If we know the 
amount of processing that each 
job requires at a resource then we 
can calculate the utilisation of the 
resource. The total amount of 
service that a system job 
generates at the ith resource is 
called the service demand,
Di : Di = SiVi
The utilisation of a resource, the 
percentage of time that the ith 
resource is in use processing to
a job, is denoted Ui
Ui = XiSi = XD
f) Interactive Response Time Law- 
The name of this law dates back 
to the time when most of the
systems which were being 
modelled were mainframes 
processing both interactive jobs 
and batch jobs. The think time, Z, 



was quite literally the length of 
time that a programmer spent 
thinking at his terminal before 
submitting another job. More 
generally interactive systems are 
those in which jobs spend time in 
the system not engaged in 
processing, or waiting for 
processing: this may be because 
of interaction with a human user, 
or may be for some other reason.
The think time represents the 
time between processing being 
completed and the job becoming 
available as a request again. Thus 
the residence time of the job, as 
calculated by Littleʼs law as the 
time from arrival to completion, is 
greater than the systemʼs 
response time. The interactive 
response time law reflects this: it 
calculates the response time, R as 
follows:
R = N=X - Z
The response time in an 
interactive system is the 
residence time minus the think 
time.



Note that if the think time is zero, 
Z = 0 and R = W, then the 
interactive response
time law simply becomes Littleʼs 
law.
g) General Residence Time Law- 
One method of computing the 
mean residence or response time
per job in a system is to apply 
Littleʼs law to the system as a 
whole. However, if the mean 
number of jobs in the system, N, 
or the system level throughput, X, 
are not known an alternative 
method can be used. Applying 
Littleʼs law to the ith resource we 
see that Ni = XiWi , where Ni is 
the mean number of jobs at the 
resource and Wi is the average 
response time of the resource. 
From the forced flow law we know 
that Xi = XVi . Thus we can 
deduce that
Ni/X = ViWi .
The total number jobs in the 
system is clearly the sum of the 
number of jobs at each resource,
i.e. N = N1 + · · · + NM if there are 



M resources in the system. We 
know from Littleʼs law that W = N/
X and from this we arrive at the 
general residence time, or general 
response time law:

 The average residence time of a 
job in the system will be the sum 
of the product of its average 
residence time at each resource 
and the number of visits it makes 
to that resource.
3)
4) Basic queuing models-
Basic Queuing Disciplines-
1. First-in-first-out (FIFO)- this 
means the oldest inventory items 
are recorded as sold first but do
not necessarily mean that the 
exact oldest physical object has 
been tracked and sold. In other
words, the cost associated with 
the inventory that was purchased 
first is the cost expensed first.
2. Last-in-first-out (LIFO)- this 
describes a method for 
accounting for inventories. Under 
this



system, the last unit added to an 
inventory is the first to be 
recorded as sold.
3. Service in random order 
(SIRO)- Under this type of queue 
structure, the customer is chosen
for service randomly and hence 
all the customers are equally 
likely to be selected. Therefore,
the time of arrival of the customer 
has no consequence on the 
selection of the customer.
4. Shortest processing time first 
(SPT)- Its principle is to order 
jobs according to their duration 
and
schedule them by beginning by 
the shorters.
5) How to resolve basic queuing 
problems
6) ?


