NAME: ASIDERE ISRAEL OLUKOME
MATRIC NUMBER: 17/SCI01/017
COURSE CODE: CSC302

1
Unstructured programming language - COBOL, FORTRAN, BASIC, MUMPS, FOCAL
Structured programming language - C, C++, PHP, ALGOL, ADA
Procedural programming language - FORTRAN, BASIC, C, Java, Pascal
Modular programming language - COBOL, Morpho, RPG, Zonnon, Erlang
Object-oriented programming language - Python, Java, C++, Ruby, Emerald
Aspect oriented language - Aspect Java, C++, C#, Smalltalk, Aspect C
Event oriented programming - Visual Basic, Visual C++, Java


II. 	
General purpose Domain – PASCAL, DELPH, JAVA, C, PYTHON
Business Domain – COBOL, BPEL, PYTHON, PERL, RUBY
Artificial intelligence Domain – LISP, PYTHON, R, PROLOG, LDT
Web programming Domain – JAVA, C#, PHP, HTML, JAVASCRIPT
[bookmark: _GoBack]Mobile programming Domain – JAVA, C#, PASCAL, PHP, PYTHON 
Embedded device Domain – PYTHON, JAVASCRIPT, C, C++, ADA
Scientific Domain – FORTRAN, ALGOL, MATLAB, R

III.
	PROGRAMMING LANGUAGE
	DOMAIN REQUEST
	CLASSIFICATION OF PROGRAMMING LANGUAGE

	Java
	General Use
	Object Oriented Programming Language

	C
	General Use
	Structured Programming Language

	Visual Basic Net
	Local Applications
	Event Oriented Programming Language

	PAP
	Web Applications
	Structured Programming Language

	Ada
	General Use
	Structured Programming Language

	Objective-C
	Apple IOS devices
	Object Oriented Programming Language

	Erlang
	Telecom, e-commerce, etc
	Modular Programming Language

	MUMPS
	Scientific Application
	Unstructured Programming Language

	FOCAL
	Digital equipment Corporation
	Unstructured Programming Language

	SQL
	Database Application
	Structured Programming Language

	Latex
	Documentation
	Structured Programming Language

	BPEL
	Business Application
	Structured Programming Language

	HTML
	Web Application
	Structured Programming Language

	Python
	General Use
	Object Oriented Programming

	COBOL
	Business Application
	Unstructured Programming Language

	PHP
	Web Application
	Structured Programming Language






2.
	YEAR
	PROGRAMMING LANGUAGE
	BRIEF HISTORY

	1840
	Analytical Engine Code
	The Analytical Engine was a theoretical (i.e., never built) mechanical general-purpose computer, created by British mathematician Charles Babbage. Ada Lovelace came across the idea, and created some code for the Analytical Engine. That’s why she’s considered the first programmer ever.

	1943
	ENIAC Code System
	The ENIAC is regarded as the first electronic general-purpose computer. Both the computer and its coding were created by John von Neumann, John Mauchly, and J. Presper Eckert.

	1949
	Brief Code (Later Short Code)
	Initially proposed by John Mauchly, it was one of the first attempts of an assembly language.

	1954
	Fortran
	One of the most popular high-level programming languages. It was created by John W. Backus at IBM as an easier alternative to programming in assembly.

	1958 
	LISP
	Created by John McCarthy, one of the pioneers of AI as well.

	1959
	COBOL
	The name stands for COmmon Business-Oriented Language, as the language was aimed mainly at banks, financial institutions and companies.

	1964
	BASIC
	Beginner’s All-purpose Symbolic Instruction Code, a family of general-purpose, high-level programming languages whose design philosophy emphasizes ease of use.

	1970
	Pascal
	Pascal is an influential imperative and procedural programming language, designed in 1968–1969 and published in 1970 by Niklaus Wirth as a small and efficient language intended to encourage good programming practices using structured programming and data structuring.

	1972
	Smalltalk
	The language that started to inflate the popularity of object-oriented programming.

	1972
	C
	Created by Dennis Ritchie and Ken Thompson at the AT&T Bell Labs. It’s simplicity and efficiency made it one of the most popular languages around the world.

	1972
	SQL
	Created at IBM, it became the standard for dealing with databases.

	1983
	C++
	Originally named “C With Classes”, it brought object-orientation to C (which is technically a subset of C++).

	1987
	Perl
	Perl is a family of high-level, general-purpose, interpreted, dynamic programming languages.

	1991
	Python
	A high-level language that emphasizes code readability, and its syntax allows programmers to express concepts in fewer lines of code than would be possible in languages such as C.

	1995
	Java
	Java is the most popular object-oriented programming language around, and it was created to have as few implementation dependencies as possible. It’s widely used in commercial and business applications.





 

3.
An object oriented program contains different types of objects, each corresponding to a complex real world objects or any complex data or a concept such as a bank customer, a bank account or any departmental store.
Modular Programming (aka 'stepwise refinement' and 'top-down design' paradigm) is a software designing technique that emphasizes separating the functionalities of a program into independent and meaningful modules, such that each module contains everything necessary for executing the one (and only one) aspect of the desired functionality.


The relationship between objects and modules is very confusing. Perhaps the best way to answer that question is to look at it historically.
Modules predate objects. Modules made their debut in 1968 when Larry Constantine organized the National Symposium on Modular Programming. Precursors to objects were already around at that time, but modern OOP didn't gain popularity until the early 90's.
Modular programming was devised in a predominately procedural world. Modules drew a box around a set of procedures and required that box to be independently deployable. It was an organization scheme for keeping procedures neat and tidy. Different languages might offer different mechanisms for implementing that scheme.
Metrics became a big part of the modular worldview. Modularity is defined as a function of coupling and cohesion, where both of those terms are also metrics. A project can be objectively evaluated to see how modular it is. A number of tools were developed for analyzing code and coming up with a set of numeric values based on different measures of software quality.
Objects form a box around a set of procedures, which qualifies them as modules. But they do much more than that, and some languages use the term module to refer to even higher levels of code organization.
Modular programming doesn't really live an independent existence these days. Modular concepts are baked into nearly every language and developer tool, and there's really no consistency between each of them. Every language is a reimagination of the modular programming tenets, and ultimately it's up to the programmer to use the tools available to create modular code.

