Cyclic changes in the breast

Breasts begin to form while the unborn baby is still growing in the mother's uterus. This starts with a thickening in the chest area called the mammary ridge or milk line. By the time a baby girl is born, nipples and the beginnings of the milk-duct system have formed.

Breast changes continue to happen over a woman's life. The first thing to develop are lobes, or small subdivisions of breast tissue. Mammary glands develop next and consist of 15 to 24 lobes. Mammary glands are influenced by hormones activated in puberty. Shrinkage (involution) of the milk ducts is the final major change that happens in the breast tissue. The mammary glands slowly start to shrink. This often starts around age 35.

What breast changes happen at puberty?

As a girl approaches her teen years, the first visible signs of breast development begin. When the ovaries start to produce and release (secrete) estrogen, fat in the connective tissue starts to collect. This causes the breasts to enlarge. The duct system also starts to grow. Often these breast changes happen at the same that public hair and armpit hair appear.

Once ovulation and menstruation begin, the maturing of the breasts begins with the formation of secretory glands at the end of the milk ducts. The breasts and duct system continue to grow and mature, with the development of many glands and lobules. The rate at which breasts grow is different for each young woman.

What cyclical changes happen to the breasts during the menstrual cycle?

Each month, women go through changes in the hormones that make up the normal menstrual cycle. The hormone estrogen is produced by the ovaries in the first half of the menstrual cycle. It stimulates the growth of milk ducts in the breasts. The increasing level of estrogen leads to ovulation halfway through the cycle. Next, the hormone progesterone takes over in the second half of the cycle. It stimulates the formation of the milk glands. These hormones are believed to be responsible for the cyclical changes that many women feel in their breasts just before menstruation. These include swelling, pain, and soreness.

During menstruation, many women also have changes in breast texture. Their breasts may feel very lumpy. This is because the glands in the breast are enlarging to get ready for a possible pregnancy. If pregnancy does not happen, the breasts go back to normal size. Once menstruation starts, the cycle begins again.

What happens to the breasts during pregnancy and milk production?

Many healthcare providers believe the breasts are not fully mature until a woman has given birth and made milk. Breast changes are one of the earliest signs of pregnancy. This is a result of the hormone progesterone. In addition, the dark areas of skin around the nipples (the areolas) begin to swell. This is followed by the rapid swelling of the breasts themselves. Most pregnant women feel soreness down the sides of the breasts, and nipple tingling or soreness. This is because of the growth of the milk duct system and the formation of many more lobules.

By the fifth or sixth month of pregnancy, the breasts are fully capable of producing milk. As in puberty, estrogen controls the growth of the ducts, and progesterone controls the growth of the glandular buds. Many other hormones also play vital roles in milk production. These include follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, oxytocin, and human

placental lactogen (HPL).

Other physical changes happen as well. These include the blood vessels in the breast becoming more visible and the areola getting larger and darker. All of these changes are in preparation for breastfeeding the baby after birth.

What happens to the breasts at menopause?

By the time a woman reaches her late 40s and early 50s, perimenopause is starting or is well underway. At this time, the levels of estrogen and progesterone begin to change. Estrogen levels dramatically decrease. This leads to many of the symptoms commonly linked to menopause. Without estrogen, the breast's connective tissue becomes dehydrated and is no longer elastic. The breast tissue, which was prepared to make milk, shrinks and loses shape. This leads to the "saggy" breasts associated with women of this age.

Women who are taking hormone therapy may have some of the premenstrual breast symptoms that they had while they were still menstruating, such as soreness and swelling. But if a woman's breasts were saggy before menopause, this will not change with hormone therapy.

Cylic changes in the vagina

Vaginal cytology was evaluated weekly over 12 months in 20 adult female Cynomolgus monkeys (Macaca fascicularis). After sacrifice of the animals the histology of the ovaries, uterus and vagina were studied in different phases of the menstrual cycle. The cytological examination of the vaginal smears showed that the superficial cells increased in number towards the middle of the cycle and the number of intermediate cells declined gradually. Parabasal cells were observed mainly at the beginning of the cycle; they disappeared towards the middle of the menstrual cycle. During the early follicular phase, the cells were moderately separated from each other, and during the second half of the proliferative or follicular phase, the superficial cells appeared clumped together. Leucocytes were usually absent except for at the beginning of the cycle and in the last few days of the late secretory or luteal phase. The maturation index of the vaginal smears can be considered as a tool for distinguishing the different phases of the menstrual cycle. The microscopic examination of the genital organs showed that during the proliferative or follicular phase of the cycle, which corresponds to the development of the ovarian follicles, the uterus showed growth of endometrial glands, stroma and endothelial cell proliferation with capillary sprouts. Shortly after ovulation and parallel to the formation of the corpora lutea, the endometrium enters the secretory or luteal phase, which is characterized by coiling of endometrial glands, glandular secretion and the differentiation of the spiral artery. The most striking changes in the vagina, is the marked basal cell proliferation and thickening of the stratum granulosum during the follicular phase of the menstrual cycle. The histological changes observed in the vagina demonstrated a good correlation with the observation on cytological examination of the smears. The present study demonstrated that the process of angiogenesis in the uterus during the different phases of the menstrual cycle is a multiple phenomenon involving proliferation, maturation and differentiation

2) Explicate the menstrual cycle

Phases of the menstrual cycle

The four main phases of the menstrual cycle are:

- menstruation
- the follicular phase
- ovulation
- the luteal phase.

Menstruation

Menstruation is the elimination of the thickened lining of the uterus (endometrium) from the body through the vagina. Menstrual fluid contains blood, cells from the lining of the uterus (endometrial cells) and mucus. The average length of a period is between three days and one week.

Sanitary pads or tampons are used to absorb the menstrual flow. Both pads and tampons need to be changed regularly (at least every four hours). Using tampons has been associated with an increased risk of a rare illness called **toxic shock syndrome (TSS)**.

Follicular phase

The follicular phase starts on the first day of menstruation and ends with ovulation. Prompted by the hypothalamus, the pituitary gland releases follicle stimulating hormone (FSH). This hormone stimulates the ovary to produce around five to 20 follicles (tiny nodules or cysts), which bead on the surface.

Each follicle houses an immature egg. Usually, only one follicle will mature into an egg, while the others die. This can occur around day 10 of a 28-day cycle. The growth of the follicles stimulates the lining of the uterus to thicken in preparation for possible pregnancy.

Ovulation

Ovulation is the release of a mature egg from the surface of the ovary. This usually occurs mid-cycle, around two weeks or so before menstruation starts.

During the follicular phase, the developing follicle causes a rise in the level of oestrogen. The hypothalamus in the brain recognises these rising levels and releases a

chemical called gonadotrophin-releasing hormone (GnRH). This hormone prompts the pituitary gland to produce raised levels of luteinising hormone (LH) and FSH.

Within two days, ovulation is triggered by the high levels of LH. The egg is funnelled into the fallopian tube and toward the uterus by waves of small, hair-like projections. The life span of the typical egg is only around 24 hours. Unless it meets a sperm during this time, it will die.

Luteal phase

During ovulation, the egg bursts from its follicle, but the ruptured follicle stays on the surface of the ovary. For the next two weeks or so, the follicle transforms into a structure known as the corpus luteum. This structure starts releasing progesterone, along with small amounts of oestrogen. This combination of hormones maintains the thickened lining of the uterus, waiting for a fertilised egg to stick (implant).

If a fertilised egg implants in the lining of the uterus, it produces the hormones that are necessary to maintain the corpus luteum. This includes human chorionic gonadotrophin (HCG), the hormone that is detected in a urine test for pregnancy. The corpus luteum keeps producing the raised levels of progesterone that are needed to maintain the thickened lining of the uterus.

If pregnancy does not occur, the corpus luteum withers and dies, usually around day 22 in a 28-day cycle. The drop in progesterone levels causes the lining of the uterus to fall away. This is known as menstruation. The cycle then repeats.