
NAME: GBENRO TIMOTHY

MATRIC NO: 15/ENG02/027

COURSE: CSC 410 – COMPUTER SYSTEM PERFORMANCE
EVALUATION

ASSIGNMENT: Assignment 1

QUESTION

1. Explain the concepts of operational laws as applied to computer
and network system performance evaluation.

2. Exhaustively describe at least eight operational laws that are
widely employed in computer system performance evaluation.

3. Distinguish between the Forced Flow Law and the Residence Time
Law from a systems perspective (not by definition).

4. Discuss some basic queuing models and basic queuing
disciplines.

5. Discuss how to resolve some basic queuing problems.
6. You have been presented with some systems performance

evaluation report; the first was done using measurement technique
only, the second was done with simulation technique only, the third
was done using analytical technique only, then the fourth was
done using measurement and simulation technique only, while the
fifth was done using simulation and analytical technique only and
the sixth was done measurement and analytical technique only.
You are the director of information technology infrastructure in your
firm and your firm is about to acquire the information infrastructure
concerned in this report.

a. What specific motive will you consider imperative in general?
b. Why do you consider this metric important?
c. If they are not in this report, what will you do in such a

report?
d. If they are part of the report, what is the first action to take

with that report and why?
e. Which reports or combination of report will you adopt and

why?

ANSWER

1. Several laws are derived which establish relationships between
throughput, response time, device utilization, space-time products
and various other factors related to computer system performance.
These laws are obtained by using the operational method of
computer system analysis. The operational method, which differs
significantly from the conventional stochastic modeling approach,
is based on a set of concepts that corresponds naturally and
directly to observed properties of real computer systems.
Operational laws are simple equations which may be used as an
abstract representation or model of the average behavior of almost
any system. The laws are very general and make almost no
assumptions about the behavior of the random variables
characterizing the system. These laws are simple and this means
that they can be applied quickly and easily by almost anyone.

2.

a. Little’s Law
The best known and most used operational law is Little’s law.
It is named after the man who published the first formal proof
of the law in 1961, although it had been widely used before
that time. Little’s law is usually phrased in terms of the jobs in
a system and relates the average number of jobs in the
system N to the residence time W, the average time they
spend in the system. Let X be the throughput, as above.
Then Little’s law states that N = XW
The average number of jobs in a system is equal to the
product of the throughput of the system and the average time
spent in that system by a job. Given a computer system,
Little’s law can be applied at many different levels: to a single
resource, to a subsystem or to the system as a whole. A little
care may be necessary if the law is applied in this way, as
the definitions of the number of jobs, throughput and
residence time used at the different levels must be
compatible with each other. At different levels of detail,
different definitions of “request” are appropriate. For
example, when considering a disk, it is natural to define a

request to be a disk access, and to measure throughput and
residence time on this basis. When considering an entire
transaction processing system, on the other hand, it is
natural to define a request to be a user-level transaction, and
to measure throughput and residence time on this basis.
Each such transaction may generate several disk accesses.
We will return to this idea of systems, or subsystems, within
a system in the following subsection.
Example: Consider a disk that serves 40 requests/second (X
= 40) and suppose that on average there are 4 requests
present in the disk system (waiting to be served or in service)
(N = 4). Then Little’s law tells us that the average time spent
at the disk by a request must be 4/40 = 0.1 seconds. If we
know that each request requires 0.0225 seconds of disk
service we can then deduce that the average queueing time
is 0.0775 seconds.

b. Forced Flow Law

It is often natural to regard a system as being made up of
several devices or resources. Each of these resources may
be treated as a system as far as the operational laws are
concerned, with the rest of the system forming the
environment of that resource. A request from the
environment generates a job within the system; this job may
then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is
treated as a request, generating a job internal to that
resource.
Suppose that during an observation interval we count not
only completions external to the system, but also the number
of completions at each resource within the system. We
define the visit count, Vi, of the ith resource to be the ratio of
the number of completions at that resource to the number of
system completions Vi ≡ Ci/C. More intuitively, we might
think of this as the average number of visits that a system-
level job makes to that resource. For example, if, during an
observation interval, we measure 10 system completions and
150 completions at a specific disk, then on the average each
system-level request requires 15 disk operations. The forced
flow law captures the relationship between the different

components within a system. It states that the throughputs or
flows, in all parts of a system must be proportional to one
another. In other words, it relates the throughput at the
individual resources (Xi = Ci/T) to the throughput at the
complete system (X = C/T). It is stated as follows Xi = XVi
The throughput at the ith resource is equal to the product of
the throughput of the system and the visit count at that
resource. An informal interpretation of this law is that, since
the visit count defines the number of visits to a resource or
device that each job needs in order to complete its
processing, the resource must keep up a correspondingly
scaled completion rate to ensure that the system completion
rate is maintained.
Example: Consider a robotic workcell within a computerised
manufacturing system which processes widgets. Suppose
that processing each widget requires 4 accesses to the lathe
and 2 accesses to the press. We know that the lathe
processes 8 widgets in a minute and we want to know the
throughput of the press. The throughput of the workcell will
be proportional to the lathe throughput, i.e. X = Xlathe/Vlathe =
8/4 = 2. The throughput of the press will be Xpress = X × Vpress
= 2 × 2 = 4. Thus the press throughput is 4 widgets per
minute.

c. Utilisation Law
If we know the amount of processing that each job requires
at a resource then we can calculate the utilisation of the
resource. Let us assume that each time a job visits the ith
resource the amount of processing, or service, time it
requires is Si. Note that service time is not necessarily the
same as the residence time of the job at that resource: in
general a job might have to wait for some time before
processing begins. The total amount of service that a system
job generates at the ith resource is called the service
demand, Di:
Di = SiVi

The utilisation of a resource, the percentage of time that the
ith resource is in use processing to a job, is denoted Ui. The
utilisation law states that

Ui = XiSi = XDi
The utilisation of a resource is equal to the product of the
throughput of that resource and the average service
requirement at that resource.
Example: Consider again the disk that is serving 40
requests/second, each of which requires 0.0225 seconds of
disk service. The utilisation law tells us that the utilisation of
the disk must be 40×0.0225 = 90%.

d. General Residence Time Law
One method of computing the mean residence or response
time per job in a system is to apply Little’s law to the system
as a whole. However, if the mean number of jobs in the
system, N, or the system level throughput, X, are not known
an alternative method can be used. Applying Little’s law to
the ith resource we see that Ni = XiWi, where Ni is the mean
number of jobs at the resource and Wi is the average
response time of the resource.

From the forced flow law we know that Xi = XVi. Thus we
can deduce that
Ni/X = ViWi.
The total number jobs in the system is clearly the sum of the
number of jobs at each resource, i.e. N = N1 +···+ NM if
there are M resources in the system. We know from Little’s
law that W = N/X and from this we arrive at the general
residence time, or general response time law:

W =∑ 𝑊𝑖 𝑉𝑖
The average residence time of a job in the system will be the
sum of the product of its average residence time at each
resource and the number of visits it makes to that resource.

Example: A web service running on an application server
requires 126 bursts of CPU time and makes 75 I/O requests
to disk A and 50 I/O requests to disk B. On average each
CPU burst requires 30 milliseconds (waiting + processing
time). Monitoring has shown that the throughput of disk A is
15 requests per second and the average number in the
buffer is 4 whilst at disk B the throughput is 10 requests per

second and the average number in the buffer is 3. Using
Little’s Law we calculate the residence time at each of the
disks (remembering that the number in the system is the
number in the buffer +1):
WdiskA = NdiskA / XdiskA = 5 /15/1000 = 5000/15
WdiskB = NdiskB / XdiskB = 4 /10/1000 = 4000/10
Then
W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB = 30×126 +
(5000/15) ×75 + (4000/10) ×50 = 3780 + 25000 + 20000 =
48780milliseconds

e. Interactive Response Time Law

The name of this law dates back to the time when most of
the systems which were being modelled were mainframes
processing both interactive jobs and batch jobs. The think
time, Z, was quite literally the length of time that a
programmer spent thinking at his terminal before submitting
another job. More generally interactive systems are those in
which jobs spend time in the system not engaged in
processing, or waiting for processing: this may be because of
interaction with a human user, or may be for some other
reason. For example, if we are studying a cluster of PCs with
a central file server to investigate the load on the file server,
the think time might represent the average time that each PC
spends processing locally without access to the file server.
At the end of this non processing period the job generates a
fresh request. The key feature of such a system is that the
residence time can no longer be taken as a true reflection of
the response time of the system. The think time represents
the time between processing being completed and the job
becoming available as a request again. Thus, the residence
time of the job, as calculated by Little’s law as the time from
arrival to completion, is greater than the system’s response
time. The interactive response time law reflects this: it
calculates the response time, R as follows:
R = N/X −Z
The response time in an interactive system is the residence
time minus the think time. Note that if the think time is zero, Z
= 0 and R = W, then the interactive response time law simply
becomes Little’s law.

Example: Suppose that the library catalogue system, has 64
interactive users connected via web browsers, that the
average think time is 30 seconds, and that system
throughput is 2 interactions/second. Then the interactive
response time law tells us that the response time must be
64/2−30 = 2 seconds.

f. Bottleneck analysis

The resource within a system which has the greatest service
demand is known as the bottleneck resource or bottleneck
device, and its service demand is maxi{Di}, denoted Dmax.
The bottleneck resource is important because it limits the
possible performance of the system. This will be the
resource which has the highest utilisation in the system. The
residence time of a job within a system will always be at least
as large as the total amount of processing that each job
requires—this will be the time that the job takes even if it
never has to wait for a resource. The total amount of
processing that a job requires is D, the total service demand,

𝐷 = 𝐷

In general, there will be some contention in the system
meaning that jobs have to wait for processing so the
residence time will be larger than this, i.e. W ≥ D
The throughput of a system will always be limited by the
throughput at the slowest resource (think of the forced flow
law); this is the bottleneck device. By the utilisation law, at
this resource, let’s call it b, Ub = XDmax. Therefore, since Ub ≤
1
X ≤ 1/Dmax
It follows that if we wish to improve throughput we should
first concentrate on this resource—improving throughput at
other resources in the system might have little effect on the
overall performance. Using Little’s law or the interactive
response time law, we can derive a tighter bound on the
response time which applies when the system is heavily
loaded (i.e. the mean number of jobs, N, is high). Applying
the interactive response time law to the throughput bound, X
≤ 1/Dmax we obtain: R = N/X −Z ≥ NDmax − Z

Applying Little’s law we obtain W ≥ NDmax. Thus the
asymptotic bound for residence time or response time is: W
≥ max{D,NDmax}
R ≥ max{D,NDmax − Z}
Similarly the bound on the throughput of an interactive
system may be made tighter when the system is lightly
loaded (i.e. the mean number of jobs, N, is small). From the
interactive response time law:
X = N/(R + Z) ≤ N/(D + Z)
Applying Little’s law (when Z = 0) we obtain X ≤ N/D.
X ≤ min{1/Dmax,N/(D + Z)}
Notice that the bottleneck depends on both resource
parameters (Xi or Si) and the workload parameters (Vi). If we
change the number of visits that each job makes to a
resource we might move the bottleneck.

g. Service Demand Law
Service demand is a fundamental concept in performance
modeling. The notion of service demand is associated both
with a resource and a set of requests using the resource.
The service demand, denoted as Di, is defined as the total
average time spent by a typical request of a given type
obtaining service from resource i. Throughout its existence, a
request may visit several devices, possibly multiple times.
However, for any given request, its service demand is the
sum of all service times during all visits to a given resource.
When considering various requests using the same
resource, the service demand at the resource is computed
as the average, for all requests, of the sum of the service
times at that resource. Note that, by definition, service
demand does not include queuing time since it is the sum of
service times. If different requests have very different service
times, using a multiclass model is more appropriate. In this
case, define Di,r, as the service demand of requests of class r
at resource i.
Service demands are important because, along with
workload intensity parameters, they are input parameters for
QN models. Fortunately, there is an easy way to obtain
service demands from resource utilizations and system
throughput. By multiplying the utilization Ui of a resource by

the measurement interval T one obtains the total time the
resource was busy. If this time is divided by the total number
of completed requests, C0, the average amount of time that
the resource was busy serving each request is derived. This
is precisely the service demand.

h. Throughput law:
Throughput can be best described as the rate at which a
system generates its products or services per unit of time.
Businesses often measure their throughput using a
mathematical equation known as Little's law, which is related
to inventories and process time: time to fully process a single
product.
Using Little's Law, one can calculate throughput with the
equation:

I = R * T
where:

I is the number of units contained within the system,
inventory.

T is the time it takes for all the inventory to go through the
process, flow time.

R is the rate at which the process is delivering throughput,
flow rate or throughput.

If you solve for R, you will get: R = I / T

3. Residence time is quantified in terms of frequency distribution of
the residence time in the set (mean residence time) and there is
focus on things being discrete while
Focused flow relates throughputs at individual resources within a
system to the overall system throughput and there is focus on
continuity.

4. The queue discipline is the method by which customers are
selected from the queue for processing by the service mechanisms

(also called servers). The queue discipline is normally first-come-
first-served (FCFS), where the customers are processed in the
order in which they arrived in the queue, such that the head of the
queue is always processed next. Various queuing disciplines can
be used to control which packets get transmitted (bandwidth
allocation) and which packets get dropped (buffer space). The
queuing discipline also affects the latency experienced by a
packet, by determining how long a packet waits to be transmitted.
Examples of the common queuing disciplines are first-in- first-out
(FIFO) queuing, priority queuing (PQ), and weighted-fair queuing
(WFQ).

The idea of FIFO queuing is that the first packet that arrives at a
router is the first packet to be transmitted. Given that the amount of
buffer space at each router is finite, if a packet arrives and the
queue (buffer space) is full, then the router discards (drops) that
packet. This is done without regard to which flow the packet
belongs to or how important the packet is.

Priority Queuing is a simple variation of the basic FIFO queuing.
The idea is to mark each packet with a priority; the mark could be
carried, for example, in the IP Type of Service (ToS) field. The
routers then implement multiple FIFO queues, one for each priority
class. Within each priority, packets are still managed in a FIFO
manner. This queuing discipline allows high- priority packets to cut
to the front of the line.

The idea of the fair queuing (FQ) discipline is to maintain a
separate queue for each flow currently being handled by the
router. The router then services these queues in a round- robin
manner. WFQ allows a weight to be assigned to each flow
(queue). This weight effectively controls the percentage of the
link’s bandwidth each flow will get. We could use ToS bits in the IP
header to identify that weight.

Last-come-first-served (LCFS) - the customers are processed such
that the customer at the back of the queue is always processed
next.

Random selection - customers are selected from the queue
randomly when another customer is required for processing.

Pre-emption selection - customers can be pre-empted during
service if a higher priority customers joins the queue, and their
service suspended or terminated.

5. In a computer network, queuing problems may involve the router
and the transmissions it receives: If the traffic is more than the
router can process efficiently, packets back up just like customers
in a checkout line. If the computer runs multiple operations that
demand more service from the central processor unit than it can
provide efficiently, that's another type of queuing problem; if a
database receives more calls for information than it can handle,
that also creates a queue.

Models
The goal of queuing theory is to develop formulas that predict the
amount of service needed to eliminate queues without the service
sitting idle a lot of the time. The first step is to develop a model for
the system in question. All queuing models include a
representation of the service - cashiers or the router, for instance
- and the probable demands on the service at any given time. The
level of demand varies not only with the number of requests for
service but how long each request takes to process.

Calculations
Queuing theory involves a number of calculations. One of the
simpler ones is Little's Theory, which states that the number of
customers on hand at a given time depends on the rate at which
they arrive, multiplied by the time it takes to process them. If a
network bottleneck causes a router to take twice as long
forwarding data packets but the packets still arrive at the same
rate, the number of data packets the router deals with at one time
is now double. That often causes a backlog until someone
resolves the problem or the arrival rate slows.

6a. To check that the report provided is authentic and is correct based
on the established standards for the chosen technique.

6b. It is important because the content of the report will be of no use and
importance if the content itself is not accurate and standard.

6c. I will make have to make do with assumptions.

6d. To proof that the reports findings are accurate by cross referencing
with other established rules and making use of other methods to confirm
the results.

6e. I will adopt the sixth report which was done using measurement and
analytical technique because no method is sufficient in itself and it may
not be accurate until proved otherwise by some other method.

