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QUESTION 

1. Explain the concepts of operational laws as applied to computer 
and network system performance evaluation. 

2. Exhaustively describe at least eight operational laws that are 
widely employed in computer system performance evaluation. 

3. Distinguish between the Forced Flow Law and the Residence Time 
Law from a systems perspective (not by definition). 

4. Discuss some basic queuing models and basic queuing 
disciplines. 

5. Discuss how to resolve some basic queuing problems. 
6. You have been presented with some systems performance 

evaluation report; the first was done using measurement technique 
only, the second was done with simulation technique only, the third 
was done using analytical technique only, then the fourth was 
done using measurement and simulation technique only, while the 
fifth was done using simulation and analytical technique only and 
the sixth was done measurement and analytical technique only. 
You are the director of information technology infrastructure in your 
firm and your firm is about to acquire the information infrastructure 
concerned in this report. 

a. What specific motive will you consider imperative in general? 
b. Why do you consider this metric important? 
c. If they are not in this report, what will you do in such a 

report? 
d. If they are part of the report, what is the first action to take 

with that report and why? 
e. Which reports or combination of report will you adopt and 

why? 
 
 
 



ANSWER 

1. Several laws are derived which establish relationships between 
throughput, response time, device utilization, space-time products 
and various other factors related to computer system performance. 
These laws are obtained by using the operational method of 
computer system analysis. The operational method, which differs 
significantly from the conventional stochastic modeling approach, 
is based on a set of concepts that corresponds naturally and 
directly to observed properties of real computer systems. 
Operational laws are simple equations which may be used as an 
abstract representation or model of the average behavior of almost 
any system. The laws are very general and make almost no 
assumptions about the behavior of the random variables 
characterizing the system. These laws are simple and this means 
that they can be applied quickly and easily by almost anyone. 

 

2.  
 

a. Little’s Law 
The best known and most used operational law is Little’s law. 
It is named after the man who published the first formal proof 
of the law in 1961, although it had been widely used before 
that time. Little’s law is usually phrased in terms of the jobs in 
a system and relates the average number of jobs in the 
system N to the residence time W, the average time they 
spend in the system. Let X be the throughput, as above. 
Then Little’s law states that N = XW 
The average number of jobs in a system is equal to the 
product of the throughput of the system and the average time 
spent in that system by a job. Given a computer system, 
Little’s law can be applied at many different levels: to a single 
resource, to a subsystem or to the system as a whole. A little 
care may be necessary if the law is applied in this way, as 
the definitions of the number of jobs, throughput and 
residence time used at the different levels must be 
compatible with each other. At different levels of detail, 
different definitions of “request” are appropriate. For 
example, when considering a disk, it is natural to define a 



request to be a disk access, and to measure throughput and 
residence time on this basis. When considering an entire 
transaction processing system, on the other hand, it is 
natural to define a request to be a user-level transaction, and 
to measure throughput and residence time on this basis. 
Each such transaction may generate several disk accesses. 
We will return to this idea of systems, or subsystems, within 
a system in the following subsection. 
Example: Consider a disk that serves 40 requests/second (X 
= 40) and suppose that on average there are 4 requests 
present in the disk system (waiting to be served or in service) 
(N = 4). Then Little’s law tells us that the average time spent 
at the disk by a request must be 4/40 = 0.1 seconds. If we 
know that each request requires 0.0225 seconds of disk 
service we can then deduce that the average queueing time 
is 0.0775 seconds. 

 
b. Forced Flow Law 

It is often natural to regard a system as being made up of 
several devices or resources. Each of these resources may 
be treated as a system as far as the operational laws are 
concerned, with the rest of the system forming the 
environment of that resource. A request from the 
environment generates a job within the system; this job may 
then circulate between the resources until all necessary 
processing has been done; as it arrives at each resource it is 
treated as a request, generating a job internal to that 
resource. 
Suppose that during an observation interval we count not 
only completions external to the system, but also the number 
of completions at each resource within the system. We 
define the visit count, Vi, of the ith resource to be the ratio of 
the number of completions at that resource to the number of 
system completions Vi ≡ Ci/C. More intuitively, we might 
think of this as the average number of visits that a system-
level job makes to that resource. For example, if, during an 
observation interval, we measure 10 system completions and 
150 completions at a specific disk, then on the average each 
system-level request requires 15 disk operations. The forced 
flow law captures the relationship between the different 



components within a system. It states that the throughputs or 
flows, in all parts of a system must be proportional to one 
another. In other words, it relates the throughput at the 
individual resources (Xi = Ci/T) to the throughput at the 
complete system (X = C/T). It is stated as follows Xi = XVi 
The throughput at the ith resource is equal to the product of 
the throughput of the system and the visit count at that 
resource. An informal interpretation of this law is that, since 
the visit count defines the number of visits to a resource or 
device that each job needs in order to complete its 
processing, the resource must keep up a correspondingly 
scaled completion rate to ensure that the system completion 
rate is maintained. 
Example: Consider a robotic workcell within a computerised 
manufacturing system which processes widgets. Suppose 
that processing each widget requires 4 accesses to the lathe 
and 2 accesses to the press. We know that the lathe 
processes 8 widgets in a minute and we want to know the 
throughput of the press. The throughput of the workcell will 
be proportional to the lathe throughput, i.e. X = Xlathe/Vlathe = 
8/4 = 2. The throughput of the press will be Xpress = X × Vpress 
= 2 × 2 = 4. Thus the press throughput is 4 widgets per 
minute. 

 
 

c. Utilisation Law 
If we know the amount of processing that each job requires 
at a resource then we can calculate the utilisation of the 
resource. Let us assume that each time a job visits the ith 
resource the amount of processing, or service, time it 
requires is Si. Note that service time is not necessarily the 
same as the residence time of the job at that resource: in 
general a job might have to wait for some time before 
processing begins. The total amount of service that a system 
job generates at the ith resource is called the service 
demand, Di: 
Di = SiVi 

The utilisation of a resource, the percentage of time that the 
ith resource is in use processing to a job, is denoted Ui. The 
utilisation law states that 



Ui = XiSi = XDi  
The utilisation of a resource is equal to the product of the 
throughput of that resource and the average service 
requirement at that resource. 
Example: Consider again the disk that is serving 40 
requests/second, each of which requires 0.0225 seconds of 
disk service. The utilisation law tells us that the utilisation of 
the disk must be 40×0.0225 = 90%. 

 
 

d. General Residence Time Law 
One method of computing the mean residence or response 
time per job in a system is to apply Little’s law to the system 
as a whole. However, if the mean number of jobs in the 
system, N, or the system level throughput, X, are not known 
an alternative method can be used. Applying Little’s law to 
the ith resource we see that Ni = XiWi, where Ni is the mean 
number of jobs at the resource and Wi is the average 
response time of the resource.  

 
From the forced flow law we know that    Xi = XVi. Thus we 
can deduce that 
Ni/X = ViWi. 
The total number jobs in the system is clearly the sum of the 
number of jobs at each resource, i.e. N = N1 +···+ NM if 
there are M resources in the system. We know from Little’s 
law that W = N/X and from this we arrive at the general 
residence time, or general response time law: 

W =∑ 𝑊𝑖 𝑉𝑖ெ
௜ୀଵ   

The average residence time of a job in the system will be the 
sum of the product of its average residence time at each 
resource and the number of visits it makes to that resource. 

 
Example: A web service running on an application server 
requires 126 bursts of CPU time and makes 75 I/O requests 
to disk A and 50 I/O requests to disk B. On average each 
CPU burst requires 30 milliseconds (waiting + processing 
time). Monitoring has shown that the throughput of disk A is 
15 requests per second and the average number in the 
buffer is 4 whilst at disk B the throughput is 10 requests per 



second and the average number in the buffer is 3. Using 
Little’s Law we calculate the residence time at each of the 
disks (remembering that the number in the system is the 
number in the buffer +1): 
WdiskA = NdiskA / XdiskA  = 5 /15/1000 = 5000/15 
WdiskB = NdiskB / XdiskB  = 4 /10/1000  = 4000/10 
Then 
W = WCPUVCPU + WdiskAVdiskA + WdiskBVdiskB = 30×126 + 
(5000/15) ×75 + (4000/10) ×50 = 3780 + 25000 + 20000 = 
48780milliseconds 

 
e. Interactive Response Time Law 

The name of this law dates back to the time when most of 
the systems which were being modelled were mainframes 
processing both interactive jobs and batch jobs. The think 
time, Z, was quite literally the length of time that a 
programmer spent thinking at his terminal before submitting 
another job. More generally interactive systems are those in 
which jobs spend time in the system not engaged in 
processing, or waiting for processing: this may be because of 
interaction with a human user, or may be for some other 
reason. For example, if we are studying a cluster of PCs with 
a central file server to investigate the load on the file server, 
the think time might represent the average time that each PC 
spends processing locally without access to the file server. 
At the end of this non processing period the job generates a 
fresh request. The key feature of such a system is that the 
residence time can no longer be taken as a true reflection of 
the response time of the system. The think time represents 
the time between processing being completed and the job 
becoming available as a request again. Thus, the residence 
time of the job, as calculated by Little’s law as the time from 
arrival to completion, is greater than the system’s response 
time. The interactive response time law reflects this: it 
calculates the response time, R as follows:  
R = N/X −Z  
The response time in an interactive system is the residence 
time minus the think time. Note that if the think time is zero, Z 
= 0 and R = W, then the interactive response time law simply 
becomes Little’s law. 



Example: Suppose that the library catalogue system, has 64 
interactive users connected via web browsers, that the 
average think time is 30 seconds, and that system 
throughput is 2 interactions/second. Then the interactive 
response time law tells us that the response time must be 
64/2−30 = 2 seconds. 

 
f. Bottleneck analysis 

The resource within a system which has the greatest service 
demand is known as the bottleneck resource or bottleneck 
device, and its service demand is maxi{Di}, denoted Dmax. 
The bottleneck resource is important because it limits the 
possible performance of the system. This will be the 
resource which has the highest utilisation in the system. The 
residence time of a job within a system will always be at least 
as large as the total amount of processing that each job 
requires—this will be the time that the job takes even if it 
never has to wait for a resource. The total amount of 
processing that a job requires is D, the total service demand,  

𝐷 = ෍ 𝐷௜

ெ

௜ୀଵ

 

In general, there will be some contention in the system 
meaning that jobs have to wait for processing so the 
residence time will be larger than this, i.e. W ≥ D  
The throughput of a system will always be limited by the 
throughput at the slowest resource (think of the forced flow 
law); this is the bottleneck device. By the utilisation law, at 
this resource, let’s call it b, Ub = XDmax. Therefore, since Ub ≤ 
1 
X ≤ 1/Dmax  
It follows that if we wish to improve throughput we should 
first concentrate on this resource—improving throughput at 
other resources in the system might have little effect on the 
overall performance. Using Little’s law or the interactive 
response time law, we can derive a tighter bound on the 
response time which applies when the system is heavily 
loaded (i.e. the mean number of jobs, N, is high). Applying 
the interactive response time law to the throughput bound, X 
≤ 1/Dmax we obtain: R = N/X −Z ≥ NDmax − Z  



Applying Little’s law we obtain W ≥ NDmax. Thus the 
asymptotic bound for residence time or response time is: W 
≥ max{D,NDmax}  
R ≥ max{D,NDmax − Z}  
Similarly the bound on the throughput of an interactive 
system may be made tighter when the system is lightly 
loaded (i.e. the mean number of jobs, N, is small). From the 
interactive response time law:  
X = N/(R + Z) ≤ N/(D + Z)  
Applying Little’s law (when Z = 0) we obtain X ≤ N/D.  
X ≤ min{1/Dmax,N/(D + Z)}  
Notice that the bottleneck depends on both resource 
parameters (Xi or Si) and the workload parameters (Vi). If we 
change the number of visits that each job makes to a 
resource we might move the bottleneck. 
 

g. Service Demand Law 
Service demand is a fundamental concept in performance 
modeling. The notion of service demand is associated both 
with a resource and a set of requests using the resource. 
The service demand, denoted as Di, is defined as the total 
average time spent by a typical request of a given type 
obtaining service from resource i. Throughout its existence, a 
request may visit several devices, possibly multiple times. 
However, for any given request, its service demand is the 
sum of all service times during all visits to a given resource. 
When considering various requests using the same 
resource, the service demand at the resource is computed 
as the average, for all requests, of the sum of the service 
times at that resource. Note that, by definition, service 
demand does not include queuing time since it is the sum of 
service times. If different requests have very different service 
times, using a multiclass model is more appropriate. In this 
case, define Di,r, as the service demand of requests of class r 
at resource i.  
Service demands are important because, along with 
workload intensity parameters, they are input parameters for 
QN models. Fortunately, there is an easy way to obtain 
service demands from resource utilizations and system 
throughput. By multiplying the utilization Ui of a resource by 



the measurement interval T one obtains the total time the 
resource was busy. If this time is divided by the total number 
of completed requests, C0, the average amount of time that 
the resource was busy serving each request is derived. This 
is precisely the service demand. 
 

h. Throughput law: 
Throughput can be best described as the rate at which a 
system generates its products or services per unit of time. 
Businesses often measure their throughput using a 
mathematical equation known as Little's law, which is related 
to inventories and process time: time to fully process a single 
product. 
Using Little's Law, one can calculate throughput with the 
equation: 
 
I  = R * T 
where:  

I is the number of units contained within the system, 
inventory. 

T is the time it takes for all the inventory to go through the 
process, flow time. 

R is the rate at which the process is delivering throughput, 
flow rate or throughput. 

If you solve for R, you will get: R = I / T 

 

3. Residence time is quantified in terms of frequency distribution of 
the residence time in the set (mean residence time) and there is 
focus on things being discrete while 
Focused flow relates throughputs at individual resources within a 
system to the overall system throughput and there is focus on 
continuity. 
 

4. The queue discipline is the method by which customers are 
selected from the queue for processing by the service mechanisms 



(also called servers). The queue discipline is normally first-come-
first-served (FCFS), where the customers are processed in the 
order in which they arrived in the queue, such that the head of the 
queue is always processed next. Various queuing disciplines can 
be used to control which packets get transmitted (bandwidth 
allocation) and which packets get dropped (buffer space). The 
queuing discipline also affects the latency experienced by a 
packet, by determining how long a packet waits to be transmitted. 
Examples of the common queuing disciplines are first-in- first-out 
(FIFO) queuing, priority queuing (PQ), and weighted-fair queuing 
(WFQ).  
 
The idea of FIFO queuing is that the first packet that arrives at a 
router is the first packet to be transmitted. Given that the amount of 
buffer space at each router is finite, if a packet arrives and the 
queue (buffer space) is full, then the router discards (drops) that 
packet. This is done without regard to which flow the packet 
belongs to or how important the packet is.   
 
Priority Queuing is a simple variation of the basic FIFO queuing. 
The idea is to mark each packet with a priority; the mark could be 
carried, for example, in the IP Type of Service (ToS) field. The 
routers then implement multiple FIFO queues, one for each priority 
class. Within each priority, packets are still managed in a FIFO 
manner. This queuing discipline allows high- priority packets to cut 
to the front of the line.   
 
The idea of the fair queuing (FQ) discipline is to maintain a 
separate queue for each flow currently being handled by the 
router. The router then services these queues in a round- robin 
manner. WFQ allows a weight to be assigned to each flow 
(queue). This weight effectively controls the percentage of the 
link’s bandwidth each flow will get. We could use ToS bits in the IP 
header to identify that weight. 
 
Last-come-first-served (LCFS) - the customers are processed such 
that the customer at the back of the queue is always processed 
next. 
 



Random selection - customers are selected from the queue 
randomly when another customer is required for processing. 
 
Pre-emption selection - customers can be pre-empted during 
service if a higher priority customers joins the queue, and their 
service suspended or terminated.  
 

5. In a computer network, queuing problems may involve the router 
and the transmissions it receives: If the traffic is more than the 
router can process efficiently, packets back up just like customers 
in a checkout line. If the computer runs multiple operations that 
demand more service from the central processor unit than it can 
provide efficiently, that's another type of queuing problem; if a 
database receives more calls for information than it can handle, 
that also creates a queue. 

Models 
The goal of queuing theory is to develop formulas that predict the 
amount of service needed to eliminate queues without the service 
sitting idle a lot of the time. The first step is to develop a model for 
the system in question. All queuing models include a 
representation of the service - cashiers or the router, for instance 
- and the probable demands on the service at any given time. The 
level of demand varies not only with the number of requests for 
service but how long each request takes to process. 

 

Calculations 
Queuing theory involves a number of calculations. One of the 
simpler ones is Little's Theory, which states that the number of 
customers on hand at a given time depends on the rate at which 
they arrive, multiplied by the time it takes to process them. If a 
network bottleneck causes a router to take twice as long 
forwarding data packets but the packets still arrive at the same 
rate, the number of data packets the router deals with at one time 
is now double. That often causes a backlog until someone 
resolves the problem or the arrival rate slows. 
 

6a. To check that the report provided is authentic and is correct based 
on the established standards for the chosen technique. 



6b. It is important because the content of the report will be of no use and 
importance if the content itself is not accurate and standard. 

6c. I will make have to make do with assumptions. 

6d. To proof that the reports findings are accurate by cross referencing 
with other established rules and making use of other methods to confirm 
the results. 

6e. I will adopt the sixth report which was done using measurement and 
analytical technique because no method is sufficient in itself and it may 
not be accurate until proved otherwise by some other method. 

 

 


