JIM UNUNUMA SUCCESS

19/MHS02/128 NURSING DEPARTMENT

Beta oxidation takes place in three stages: dehydrogenation, hydration, oxidation and thyolisis. Each step is by a distinct enzymes. Briefly, each cycle of this process begins with an acyl-CoA chain and ends with one acetyl-CoA, one FADH2, one NADH and water, and the acyl-CoA chain becomes two carbon shorter. The total energy yield per cycle is 17 ATP molecules (see below for details on the breakdown). This cycle is repeated until two acetyl-CoA molecule are formed as opposed to one acyl-CoA and acetyl-CoA.

DEHYDRATION

In the first step, acyl-CoA is oxidized by the enzyme acyl CoA dehydrogenase. A double bond is formed between the second and third carbons (C2 and C3) of the acyl-CoA chain entering the beta oxidation cycle; the end product of this reaction is trans- Δ^2 -enoyl-CoA (trans-delta 2-enoyl CoA). This step uses FAD and produces FADH2, which will enter the citric acid cycle and form ATP to be used as energy.

HYDRATION

In the second step, the double bond between C2 and C3 of trans- Δ^2 -enoyl-CoA is hydrated, forming the end product L-ß-hydroxyacyl CoA, which has a hydroxyl group (OH) inC2, in the place of the double bond .This reaction is catalysed by another enzyme: enoyl CoA hydratase.

OXIDATION

In the third step, the hydroxyl group in C2 of L-ß-hydroxyacyl CoA is oxidized by NAD+in a reaction that is catalysed by3-hydroxyacyl-CoA dehydrogenase. The end products are ß-ketoacyl CoA and NADH + H.

NADH will enter the citric acid cycle and produce ATP that will be used as energy