OLUWALE OLUFEMI ADESOLA
19/MHSO1/341
MBBS

OLUNALE OLLIFMI ADESOLA

19/M+1501/341
MAT 104
MBBS

1. $\int \frac{11-3 x}{\left(x^{2}+2 x-3\right)} d x$
$\begin{aligned} & \frac{11-3 x}{\left(x^{2}+2 x+3\right)}=\frac{11-3 x}{(x-1)(x+3)}=\frac{A}{(x-1)}+\frac{B}{(x+3)} \\ & \text { Multiply Thwough by }(x-1)(x+3)\end{aligned}$
$11-3 x=A(x+3)+B(x-1)$
$\left(x^{2}+2 x+3\right) \quad(x-1)(x+3)$
$11-3 x=A(x+3)+B(x-1)$

$$
\text { At } x=-3 \text {, we have }
$$

$$
11+9=B(-3-1)
$$

$$
20=B(-4)
$$

$$
B=-5
$$

$$
\text { At } x=1 \text {, we have }
$$

$$
11-3=A(4)
$$

$$
8=A(4)
$$

$$
A=2
$$

$\therefore \int \frac{11-3 x}{\left(x^{2}+2 x+3\right)} d x=\int \frac{2}{(x-1)} d x+\int \frac{-5}{(x+3)} d x$

$$
\text { Let } u=x-1 \quad \text { Let } u=x+3
$$

$$
\frac{d u}{d x}=1 \quad \frac{d u}{d x}=1
$$

$$
d x=d u \quad d x=d u
$$

$$
\begin{aligned}
& \Rightarrow \int \frac{11-3 x}{} d x=2 \int \frac{d u}{u}-5 \int \frac{d u}{u} \\
& \# 4>\int \frac{11-3 x+3)}{\left(x^{2}+2 x+3\right)} d x=2 \ln u-5 \ln u \\
& \int(11-3 x d x=2 \ln (x-1)-5 \ln (x+3)+c
\end{aligned}
$$

2. $\int \frac{4 x-16}{\left(x^{2}-2 x-3\right)} d x$

$$
\begin{aligned}
& \frac{4 x-16}{\left(x^{2}-2 x-3\right)}=\frac{4 x-16}{(x-3)(x+1)}=\frac{A}{(x-3)}+\frac{B}{(x+1)} \\
& \frac{4 x-16}{\left(x^{2}-2 x-3\right)}=\frac{A(x+1)+B(x-3)}{4 x-16}=\frac{A(x-3)(x+1)+B(x-3)}{4(x+1)}
\end{aligned}
$$

At $x=-1$, we have

$$
\begin{aligned}
-4-16 & =B(-4) \\
-20 & =B(-4) \\
B & =5
\end{aligned}
$$

At $x=3$, we have

$$
\begin{aligned}
-4 & =A(4) \\
A & =-1
\end{aligned}
$$

$$
\int \frac{4 x-16}{\left(x^{2}-2 x-3\right)} d x=\int \frac{-1 d x}{(x-3)}+\int \frac{5}{(x+1)} d x
$$

Let $u=x-3 \quad$ Let $u=x+1$

$$
\frac{d u}{d x}=1 \quad \frac{d u}{d x}=1
$$

$$
d x=d x \quad d x=d x
$$

$$
\Rightarrow \int \frac{4 x-16}{\left(x^{2}-2 x-3\right)} d x=-1 \int \frac{d u}{u}+5 \int \frac{d u}{u}
$$

$$
\begin{aligned}
& \int \frac{4 x-16 d x}{\left(x^{2}-2 x-3\right)}=-1 \ln 4+5 \ln 4 \\
& \int \frac{4 x-16}{\left(x^{2}-2 x-3\right)} d x=-\ln (x-3)+5 \ln (x+1)+c
\end{aligned}
$$

3. $\int \frac{2 x^{2}-9 x-35}{(x+1)(x-2)(x+3)} d x$

$$
\frac{2 n^{2}-9 n-35}{(n+1)(n-2)(n+3)}-\frac{A}{(n+1)}+\frac{B}{(x-2)}+\frac{C}{(x+3)}
$$

$$
\begin{aligned}
& \frac{2 x^{2}-9 x-35}{(x+1)(x-2)(x+3)}=\frac{A(x-2)(x+3)+B(x+1)(x+3)+C(x+1)(x-2)}{(x+1)(x-2)(x+3)} \\
& 2 x^{2}-9 x-35=A(x-2)(x+3)+B(x+1)(x+3)+C(x+1)(x-2)
\end{aligned}
$$

When $x=-1$

$$
\begin{gathered}
2(-1)^{2}+9(-1)-35=A(-3)(2) \\
2-9-35=A(-6) \\
-42=A(-6) \\
A=7
\end{gathered}
$$

When $x=2$

$$
\begin{gathered}
2(2)^{2}-9(2)-35=B(3)(5) \\
8-18-35=B(18) \\
-45=B(15) \\
B=-3
\end{gathered}
$$

When $x=-3$

$$
\begin{aligned}
& 2(-3)^{2}-9(-3)-35=C(-2)(-5) \\
& 18+27-35=C(10) \\
& 10=c(10) \\
& c=1 \\
& \int \frac{2 x^{2}-9 x-35 d x}{(x+1)(x-2)(x+3)}=\int \frac{7}{(x+1)} d x+\int \frac{-3}{(x-2)} d x+\int \frac{d x}{(x+3)} \\
& \text { Let } u=x+1 \quad \text { Lot } u=x-2 \quad \text { Let } u=x+3 \\
& \frac{d u}{d x}=1 \quad \frac{d y}{d x}=1 \quad \frac{d x}{d x}=1 \\
& d u=d x \quad d u=d x \quad d u=d x \\
& \int \frac{2 x^{2}-9 x-35 d x}{(x+1)(x-2)(x+3)}=7 \int \frac{d u}{4}-3 \int \frac{d u}{4}+\int \frac{d u}{u} \\
& \int \frac{2 x^{2}-9 x-35 d x}{(x+1)(x-2)(x+3)}=7 \ln u-3 \ln u+\ln u \\
& \int \frac{2 x^{2}-9 x-35 d x=7 \ln (x+1)-3 \ln (x-2)+\ln (x+3)}{(x+1)(x-2)(x+3)}
\end{aligned}
$$

