NAME: AWALA DIVINE PAUL

MATRIC NO: 19/ENG05/016

DEPARTMENT: MECHATRONICS ENGINEERING.

COURSE CODE: MAT 102

COVID-19 HOLIDAY ASSIGNMENT

1. Find the equation of the tangent at the point (1, 0) on the circle $x^2 + y^2 - 5x - y + 4 = 0$

SOLUTION

Equation of circle $x^2 + y^2 - 5x - y + 4 = 0$

$$x^2 - 5x + y^2 - y = -4$$

Using completing the square method
$$x^2 - 5x + y^2 - y = -4$$
 $(x - 2.5)^2 + (y - 0.5)^2 = -4 + 6.25 + 0.25$ $(x - 2.5)^2 + (y - 0.5)^2 = -4 + 6.5$ $(x - 2.5)^2 + (y - 0.5)^2 = 2.5$

$$(x-2.5)^2 + (y-0.5)^2 = -4 + 6.5$$

$$(x-2.5)^2 + (y-0.5)^2 = 2.5$$

The centre of the circle is $(2\frac{1}{2}, \frac{1}{2})$

Slope of the Radius of the circle, $R = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{0 - \frac{1}{2}}{1 - 2\frac{1}{2}}$ $= \frac{-\frac{1}{2}}{-1\frac{1}{2}}$

Slope of the Tangent to the circle, T =

$$= -\frac{1}{\frac{1}{3}}$$

$$= -\frac{1}{1} \times \frac{3}{1}$$

$$= -3$$

The equation of the Tangent: $(y - y_1) = m(x - x_1)$

$$(y-0) = -3(x-1)$$

 $y = -3x + 3$
 $y + 3x - 3 = 0$

$$y + 3x - 3 = 0$$

$$\therefore \text{ The equation of the Tangent is } 3x + y - 3 = 0$$

2. Find the equation of the tangent at the point (1, 0) on the circle $x^2 + y^2 - 12x - 12y + 47 = 0$

SOLUTION

Equation of circle $x^2 + y^2 - 12x - 12y + 47 = 0$ Using completing the square method

$$v^2 - 12v + v^2 - 12v = -47$$

$$x^{2} - 12x + y^{2} - 12y = -47$$

$$(x - 6)^{2} + (y - 6)^{2} = -47 + 36 + 36$$

$$(x - 6)^{2} + (y - 6)^{2} = -47 + 72$$

$$(x - 6)^{2} + (y - 6)^{2} = 25$$

$$(x-6)^2 + (y-6)^2 = -47 + 72$$

$$(x-6)^2 + (y-6)^2 = 25$$

The centre of the circle is (6, 6)

Slope of the Radius of the circle, $R = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} - \frac{0 - 6}{x_2 - x_1}$

Slope of the Tangent to the circle, $T = -\frac{1}{m}$ $= -\frac{1}{\frac{6}{5}}$ $= -\frac{1}{\frac{6}{5}}$ $= -\frac{1}{\frac{6}{5}}$ The equation of the Tangent: $(y - y_1) = m(x - x_1)$ $= -\frac{5}{6}(x - 1)$

$$(y-0) = -\frac{5}{6}(x-1)$$
$$y = -\frac{5}{6}(x-1)$$

$$y = -\frac{5}{6}(x-1)$$

$$6y = -5(x-1)$$

$$6y = -5x + 5$$

$$6y + 5x - 5 = 0$$

 \therefore The equation of the Tangent is 5x + 6y - 5 = 0

3. Find the equation of the tangent at the point (1, 0) on the circle $x^2 + y^2 - 8x + 14y + 40 = 0$

SOLUTION

Equation of circle $x^2 + y^2 - 8x + 14y + 40 = 0$ Using completing the square method

osing completing the square method
$$x^{2} - 8x + y^{2} + 14y = -40$$

$$(x - 4)^{2} + (y + 7)^{2} = -40 + 16 + 49$$

$$(x - 4)^{2} + (y + 7)^{2} = -40 + 65$$

$$(x - 4)^{2} + (y + 7)^{2} = 25$$

The centre of the circle is (4, -7)

Slope of the Radius of the circle, $R = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{0+7}{1-4}$ $= \frac{7}{-3}$ $= -\frac{7}{3}$

Slope of the Tangent to the circle, T = -

The equation of the Tangent: $(y - y_1) = m(x - x_1)$ $(y - 0) = \frac{3}{7}(x - 1)$ $y = \frac{3}{7}(x - 1)$ 7y = 3(x - 1) 7y = 3x - 3

$$7y = 3x - 3 7y - 3x + 3 = 0$$

3

 \therefore The equation of the Tangent is -3x + 7y + 3 = 0