Question 1

Arogunmat Oluwadamilola Alexander Mechodronics Engineering 18/ENGO5/O11

ENG 282 Assignment 5
(a)

Tank holds 1200 gal of water with 130 lb of salt dissolved in it

- Input rate $\Rightarrow 5$ gal af brinelwit $[1$ gall has $(1+$ sine $) / 16$ of salt $]$]
- Cudpuot Rode $\Rightarrow 30 \mathrm{gal}$ of brine/min
m = mound of salt at any time t
Applying the balance law

(1) 50gal of water enter perminute and a gallon has $(1+\sin t)(b$ of sale

$$
\therefore m_{\text {in }}=50 \operatorname{gal}^{(1+\sin t} / \min x(1+\sin t)^{b /} / \mathrm{min}=50(1+\sin +11 /)_{\mathrm{min}}
$$

(5) If the tank cardains 12 oogal at water and 30 gal of water leaves per minute. That means $\frac{30}{1200^{8}}=\frac{1}{40}=0.025$
$\Rightarrow 2.5 \%$ of the water in the tank leaves per minute Therefore, 2.5% of the salt will dod leque the tank e per minute;

$$
\begin{aligned}
& \text { mont } \Rightarrow 2.5 q_{0} \text { of } \mathrm{m} \\
& \frac{d m}{d t}=50(1+\sin t)-0.025 \mathrm{~m}
\end{aligned}
$$

- The or diary differential equation CODE)

18/ENGOS/011
(b) $\frac{d m}{d t}=50(\sin (+1)-0.025 \mathrm{~m}$
solving the differential equation ushas the integrating factor method

$$
\frac{d m}{d t}+0.025 m=50(\sin t+1)
$$

$$
\text { comparing }(?) \text { with } \frac{d y}{d x}+P y=Q\left(\frac{d m}{d t}+P i n=Q\right)
$$

$$
P=0.025, Q=50(\sin x+1)
$$

$$
e^{\int P d t}=\text { integrating factor }
$$

$$
\int P d t \Rightarrow \int 0.025 d t=0.025 t
$$

$$
1 F \Rightarrow e^{0.025 t}
$$

from $\quad y \cdot I F=\int Q \cdot F \cdot d x$

$$
\begin{gathered}
m \cdot 1 F=f Q \cdot 1 F d t \\
m \cdot e^{0.025 t}=\int 50(\sin t+1) \cdot e^{0.025 t} d t \\
\int 50(\sin t+1) \cdot e^{0.025 t} d t=\int 50 e^{1 / 40} \cdot(\sin t+1) d t \\
\Rightarrow 50 \int e^{t / 40}(\sin t+1) d t
\end{gathered}
$$

$$
\text { (sit) } \sin \Rightarrow \operatorname{cet} a=1 / 40 \rightarrow d u / d t=\frac{1}{40}, d t=40 d u \text {. }
$$

$\Rightarrow 40) \int e^{u}(\sin 40 u+1) d u$
\rightarrow removing the costard for now

$$
\begin{array}{ll}
\int e^{u}(\sin 40 u+1) d u & \\
\text { let } g=\sin 40 u+1, & d u=e^{u} d u \\
\frac{d g}{d u}=40 \cos 40 u r & \int d u=\int e^{u} d u \\
d g=40 \cos 40 u) d u & v=e^{u}
\end{array}
$$

$$
\text { from } \quad \int g d u=g u-\int v d y
$$

$$
\int e^{u}(\sin 40 u+1) d u \Rightarrow e^{u}(\sin 40 u+1)-\int 40 e^{y}(\cos 40 y) d u
$$

$$
\begin{equation*}
\int 40 e^{4}(\cos 40 u) d u \Rightarrow 40 \int e^{u}(\cos 40 u) d u \tag{3}
\end{equation*}
$$

$\int e^{u} \cos 40 u d u \Rightarrow$ let $g=6 \cos 40 u \quad d v=e^{u} d u$

$$
\begin{array}{r}
\frac{d y}{d u}=-40 \sin 40 u, \int d u=\int e^{u} d u \\
\Rightarrow \int g d v=g v-\int v d y \\
\int e^{u} \cos 40 u d u=e^{u} \cos 40 u-\int-40 e^{u}(\sin 40 u) d u
\end{array}
$$

"Integrating by pant again

$$
\int g d u=g v-\int v d g \quad g==71 .
$$

$$
g=5-40 \sin 40 u \quad d x=e^{u}
$$

$$
\begin{array}{ll}
d y=-1600(\cos 40 u)^{2} u, & v=e^{u}
\end{array}
$$

$\int e^{u} \cos 40 u d u=e^{u} \cos 40 u-\left(-40 e^{u} \sin 40 u-\int-160 e^{u} \cos 40 u d u\right.$

$$
\begin{aligned}
& \int e^{u} \cos 40 u d u=s e^{u} \cos (t+0)-\left(-40 e^{u} \sin (40 u)+1600 \int e^{u} \cos 40 u d u\right. \\
& \int e^{u} \cos 40 u d u+1600 \rho^{u} \operatorname{cost}
\end{aligned}
$$

$$
\int e^{4} \cos 40 u d u+1600 \int e^{u} \cos 40 u d u=e^{u} \cos 40 u+40 e^{u} \sin 40 u
$$

$$
1601 \int e^{u} \cos 40 u d u=e^{u} \cos 40+40 e^{u} \sin 40 u
$$

Dividing through by 1601

$$
\frac{\operatorname{le\pi } \int e^{4}(\cos 40 u) d u}{160}=\frac{40 e^{u} \sin 40 u+e^{u} \cos 40 u}{1601}
$$

Bringing back the onstant thed was venoked

$$
40 e^{u} \cos -6 u d u=\frac{40\left(40 e^{4} \sin 40 u+e^{u} \cos 40 u\right)}{1601}-(4)
$$

But from eqn (3)

$$
\begin{aligned}
& =\int e^{u}(\sin 40 u+1) d u=e^{4} \sin 40 u+1-\int 40 e^{4} \cos 40 u d u \\
& \left.\int e^{u(s i n} 40 u+1\right) \operatorname{dos}=e^{4} \sin 40 u+1-\frac{40\left(40 e^{4} \sin 400+e^{4}(a+40)\right.}{1601} \\
& \text { Bringing boek (sunstant removed (to) } \\
& 40 \int e^{u} \sin 40 u+1 d u=40 e^{u}(\sin 40 u+1)-\frac{1600\left(400^{u} \text { es } A 0 u+e^{4} 0 \operatorname{sen}\right.}{1601}
\end{aligned}
$$

substituting $u=t / 40$ baek

$$
\Rightarrow 40 e^{t / 40}(\sin t+1)-\frac{1600\left(40 e^{1 / 40}+e^{t / 40} \cos (t)\right.}{1601}
$$

BWinging back the first constant renoved (50)

$$
\begin{aligned}
& 50 \int e^{t / 40}(\sin (t)+1) d t \\
& \text { muldipying } \Rightarrow 2000 e^{1 / 40}(\sin t-11)-\frac{80000\left(40 e^{1 / 40} \cdot \operatorname{tit} t+e^{140} \cos t\right)}{1601} \\
& \text { throigh by } 50 \\
& \begin{aligned}
& 50 \int e^{t / 40}(\sin t+1) d t \\
& \Rightarrow \frac{2000 e^{t / 40}(\sin t-40 \cos t+1601)}{1601}+c
\end{aligned}
\end{aligned}
$$

Going back to the original Indegruating factor equal a

$$
\begin{aligned}
m \cdot 1 F & =\int 0 \cdot 1 F d t \\
m \cdot e^{0.025 t} & =\int 50(\sin t+1) \cdot e^{0.025 t} d t
\end{aligned}
$$

a substitution eq =(5)

$$
\begin{aligned}
& m \cdot e^{0.025 t}=\frac{2000 e^{0.025 t}(\sin t-40 \cos t+1601)}{(601}+c \\
& m=\frac{2000 e^{0.025 t}(\sin t-40 \cos t+1601)}{1601 \cdot e^{0.025 t}}+\frac{c}{e^{0.021 t}} \\
& m=\frac{2000(\sin t-40(0 s t+1601)}{(601}+m_{0} \cdot e^{-0.025 t}
\end{aligned}
$$

at $t=0$ min and $m=1501 \mathrm{~b}$ of salt

$$
\begin{aligned}
& 150=\frac{2000(\sin 0-40 \cos (0)+1601)}{1601}+m_{0} \cdot 1 \\
& 150=\frac{2000(-40+1601)}{1601}+m_{0} \\
& 150=1950.03+m_{0} \\
& m_{0}=150-1950.03=-1800.03
\end{aligned}
$$

Substituting m_{0} into eqn (6)

$$
m=\frac{2000(\sin t-40 \cos t+1601)}{1601}-\frac{1800.03}{e^{0.025 t}}
$$

Solution to Differential Equation using matlab

Dynamic Response

Question 2

Model 1

Model 2

Dynamic Response

