ATUMA JANMA DAVID

MECHATRONICS ENGINEERING

18/ENG05/012

ENG 282

1. The tank contains 1200 gal of water with dissolved salt 30 gal of the solution exits the tank per minute;
$30 \mathrm{gal} / 1200 \mathrm{gal}=0.025=2.5 \%$
Amount of salt present at any time ' t ' be ' y '
Time rate of change at ' y ' $=d y / d t=y_{\text {in }}=y_{\text {out }}$
If 50 gal of brine enters the tank per minute \& 1gal contains $(1+\sin)$ lb of salt, then ' t ' $=1,(1+\sin \mathrm{t})=(1+\sin 1)=1.02 \mathrm{lb}$
(i). Amount of salt entering the tank is;
$50 \mathrm{gal} / \mathrm{min} \times 1.02 \mathrm{lb} / \mathrm{gal}=51 \mathrm{lb} / \mathrm{min}$

$$
\begin{aligned}
& \text { Yout }=2.5 \% \text { of } y \\
& (\mathrm{dy} / \mathrm{dt}) .(\mathrm{lb} / \mathrm{min})=51 \mathrm{lb} / \mathrm{min}-2.5 \mathrm{y} .(\mathrm{lb} / \mathrm{min})
\end{aligned}
$$

(ii). $d y / d t=51-0.025 y, d y / d t=-0.025 y+51$ $d y / d t=-0.025 .((-0.025 y /-0.025)+(51 /-0.025))$; $d y / d t=-0.025 .(y-2040)$ $d y /(y-2040)=-0.025 d t ; \int-0.025 d t$
$\int d y /(y-0.2040)=-0.025 . \int d t ;$
$\ln (y-2040)=-0.025 t+c$
$\mathrm{y}-2040=\mathrm{e}^{-0.025+\mathrm{c}}$;
$y-2040=e^{-0.025 t} . e^{c}$
$\mathrm{y}-2040=\mathrm{e}^{-0.025 t} \mathrm{y}_{0}$;
$\mathrm{y}-2040=\mathrm{y}_{0} \mathrm{e}^{-0.025 \mathrm{t}}$
$y=y_{0} e^{-0.025 t}+2040 ;$
when $\mathrm{t}=1, \mathrm{y}=150 \mathrm{lb}$;
$\therefore 150=\mathrm{y}_{0} \mathrm{e}^{-0.025}+2040 ; 150-2040=\mathrm{y}_{0} \times 1$
$\mathrm{y}_{0}=-1890$
$\mathrm{y}=-1890 \mathrm{e}^{-0.025 \mathrm{t}}+2040$
$\therefore y=2040-1890 \mathrm{e}^{-0.025 t}$

