ABIMBOLA OLUWAFEMI GIDEON

DEPARTMENT: MECHATRONICS ENGINEERING

MATRIC NO: 18/ENG05/002

ENGINEERING MATHEMATICS ASSIGNMENT V

COURSE CODE: ENG282

			3/3
	18/ENG05/002 Abimbola Olywageni Gideon		
	Mechatronics Engineering		m
	MATRIC NO: 18/ENGOS/002		501
	Engineering Mathematics Assignment Question 1 solution		=50 F
9	de 2 Min - Mont	Ph Same	let
	Min = 50 gal x Cl+sint) lb	-6-5	40 f.
	Mous = 3099/minuse = 0.025m. 1200 gal dm = 50 (1+8int) - 0.025m	- M.O.	de
	dt	rhanes	ap.
Q. O.	of dm 2 50 (it sint) - 0-025m The wing integrating the Factor method.	olo a 5	-
- Ta	method. idm + 0.025m = 50 (1+5mt)	f of	= se
	9-1F= Q-1F	13314	540
	1F = EPSt SPdt = 60.025dt	10	Jou
	y=m, m-1== \Q-1=dt	lesson of	-
		V	

M.60.0527 - (20 (H) 14) -6.052 pt So (Itsint) . e o dt = [50e 40 (14sint) dt =50 | e 40 (| + sint) | 6. 1e+ 50 = 10 let u= to then de = to do to to dy 40 fer (It sin you) du de +0004000 du=endu

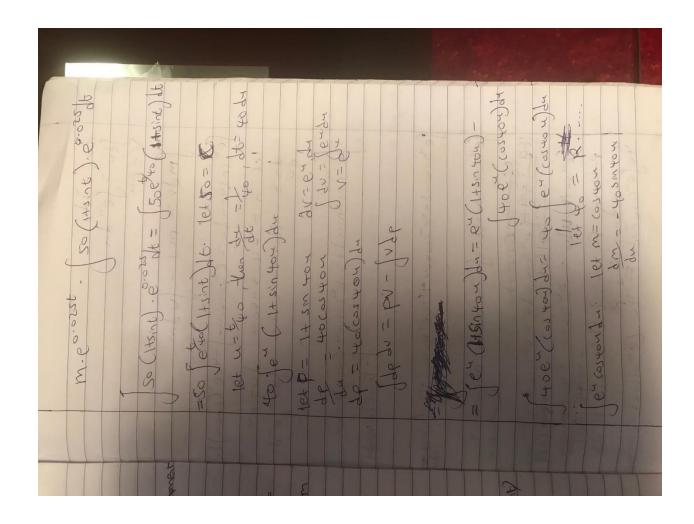
de +0004000 fdv=fendu

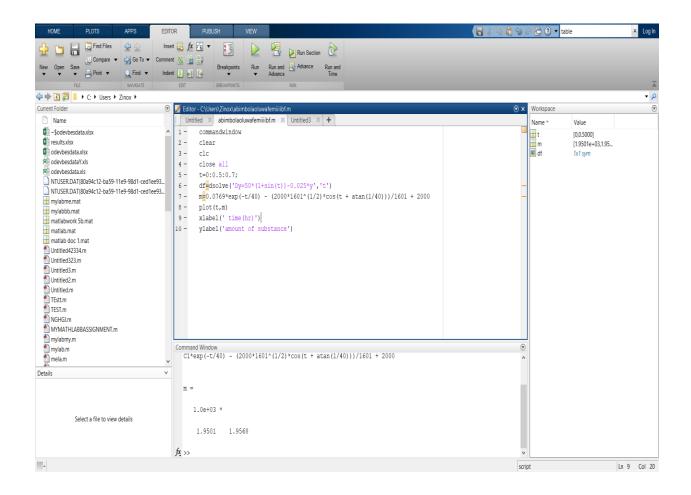
de = 40004000 fzv=fendu

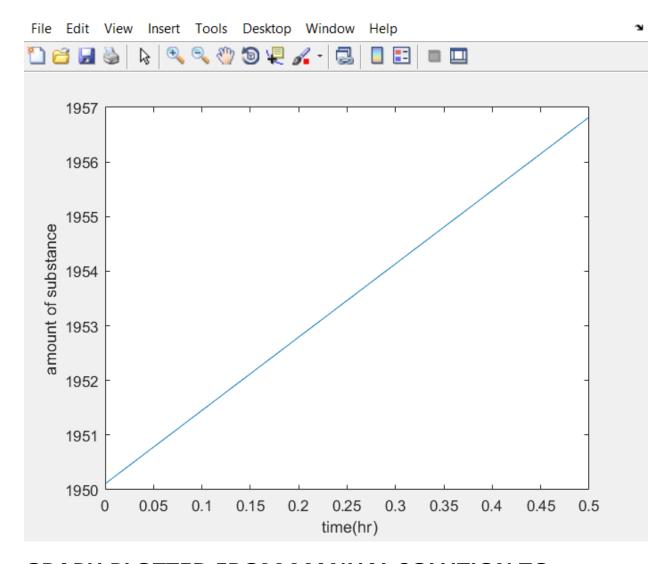
de = 400054000 du [dp dv = pv - [vdp (er (HSin 404) du = er (1+sin 404) -1408 (coston) ga 400 ((0) 400) dus 40 fer ((0)40 u)du en costanga. let w= costan dm - - 40 sm ton

du=e du mdv=mv-Judm -40e (sinyou) du let n = - 40 sin 404 da = -1600 Cosyodu Sdr= ferdu e cos 40 mdn = 6 coston - (-40 en 2 m ton -1-1600e cosyondu e tos youd = 2e "cos you + to e's n you thou [e tos you [e conting to book on to my to my to be the end on to 1599-1601 = 154001 + 40601 MENT = 6,001 400 + 40601 MENT = 1240 [80] remaining R on 1 HS and R HS

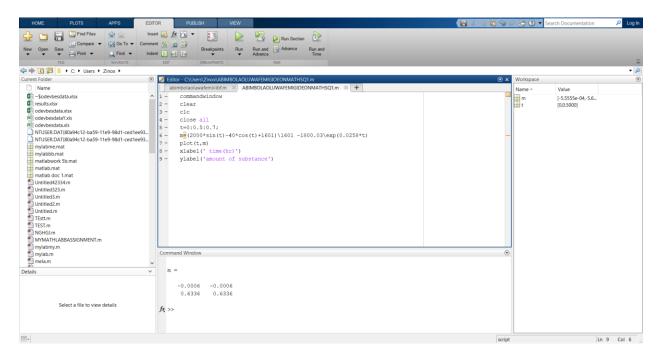
10 pully plying by R

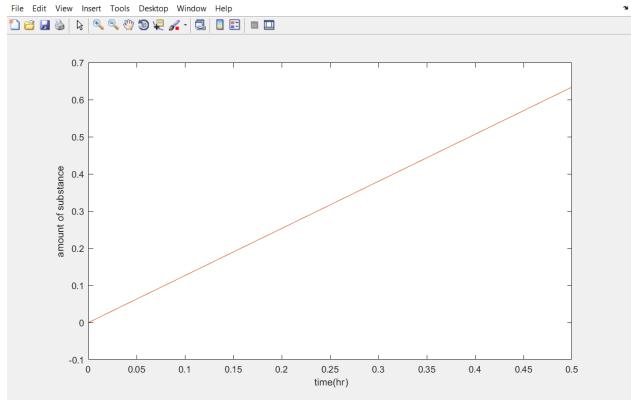

40 pully plying by R

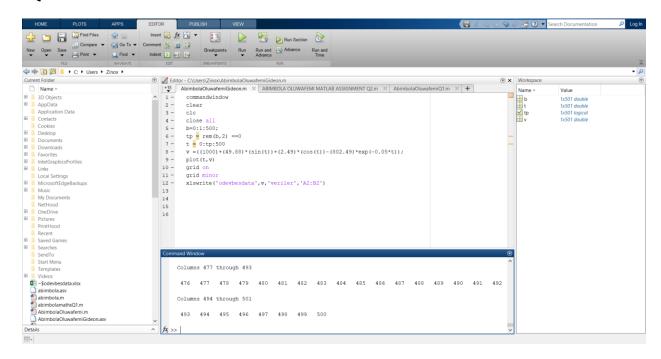

40 pully plying by R

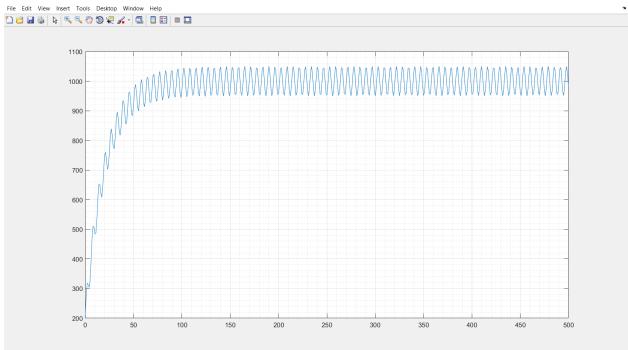

40 pully plying by R

1e cht southou) des et Hantoutt -400 (23404 du du ze statoutl = 40 (40 et/2 1601 - 1599 1601 ousin tout 1 du = 40 2 ((myo 4) 1600 (your shyout er cos you) du so le to (Haint) de 2000 et 150 (1+17nt) - 80000 (40e to sint te to edo = (601) 50 fet co (Hant) It
= 2000 et co (sint-40 (out + Man))
+ C. Enpergripe & (royn


m= 200 (sint-40 cost +160+)+ C - 6599 1604 e0-0256. · puttin t = 0, m = 150 150 = 2000 (SING - 40 COU O + 599) + C. 102 1950-67 + C C= 190-19000]== 1800-03 m = 2000(snt-40(05+1601)-1800-03-108






GRAPH PLOTTED FROM MANUAL SOLUTION TO EQUATION

QUESTION 2

