NAME: ALEGBELEYE OLUWAFEMI OLADIPUPO

MATRIC NO: 17/ENG04/011

DEPARTMENT: ELECT/ELECT

ENG 342

ANSWERS

A. Benefits of filters in engineering

- Filters are essential building blocks of any Electronics and Communication Systems that alter the amplitude and phase characteristics.
- Filters is basically linear circuit that helps remove unwanted components such as Noise, Interference and Distortion from the input signal
- They are used in Radio tuning
- They are used In Signal Processing Circuits and Data Conversion
- Filters are used in pre-amplification, Equalization in Audio systems

B. Building a low pass filter with 0.0050hms and 0.01F

Gathering Blocks

Step 1: Create new model

Step 2: Insert Scope

Step 3: Insert AC Voltage Supply

Step 4: Insert Series RLC Branch and another Series RLC Branch

Step 5: Insert Ground

Step 6: Insert powergui

Step 7: Insert Voltage Measurement

y 🍾	untitle	ר אמשלכבער אמשטכבער אמשטכבער אמשטכבער אין איין איין איין איין איין איין איין													BbCcl	□ Ad × īt
, Fil	e Edit	dit View Display Diagram Simulation Analysis Code Tools Help														
6 👌	• •	⊐ ▼ 🗐 🔄 ⇔ ☆ 📲 🖗 ♥ 🚍 ▼ 📫 ♥ 🚯 🕨 🕒 🖉 ▼ 10.0 ×											»	⊘ •	₩ •	
ser	unti	ntitled														
Brow	۲	▶ untitled ▼													perty	
Model	Ð	Quickly insert blocks by double clicking in the diagram and typing part of the block name. More information.														
F	57															otor
	⇒															
	ΑΞ															
	\sim															
				□- 4\\\\}	M- -∎		∎-4₩	-₩ -•								
			•													
			ė													
										Contin	nuous					
	0		powergui													
							-									
	«															
Re	Ready							100%						auto	o(ode1	5s)

Modifying the Blocks

4

Step 1: Double click on the first *Series RLC Branch*, edit Branch type to **R** and Resistance (ohms) to **0.005**

Step 2: Double click on the second *Series RLC Branch*, edit Branch type to **C** and Resistance (farrads) to **0.01**

Step 3: Double click on the *AC Voltage Supply*, edit the Peak Amplitude to 50V and Frequency to 10Hz

Connecting Blocks with Lines

Step 1: Drag the mouse from the output terminal of the AC Voltage Supply to the Series Resistor and to the Series Capacitor.

Step 2: Negative terminal of the *Series Capacitor* is connected to the Negative terminal of *Voltage Measurement*. The Positive terminal of the *Voltage Terminal* is bridged to the connection between the *Series Resistor and Series Capacitor*

Step 3: Drag the mouse from the output terminal of the *Voltage Measurement* to the input of the *Scope*

Step 4: Drag the mouse from the negative terminal of the AC Voltage Supply to the Ground

Step 5: Drag the mouse from the *Ground* to the negative terminal of the *Series Capacitor*.

C. To determine the cutoff frequency

$$f_c = \frac{1}{2x\pi x \text{RxC}} = \frac{1}{2x\pi x 0.005 x 0.01} = 3183.0988 \text{ Hz}$$

D. Simulation of Model

Now that the model is complete, you can simulate the model. Select **Start** from the **Simulation** menu to run the simulation. Double-click on the _Scope_block to view its output. Hit the **autoscale** button (binoculars) and you should see the following:

E. If two signals of 5K and 2k ohms are passed through a filter

When 2k ohms signal passes through the filter

Transfer function= $\frac{(0.02)}{(s+0.02)}$

Observation: When signal of 5k ohms was passed through the filter, the signal was attenuated at **3.977e-02**. The high frequency signal was blocked out while the low frequency signal passed through. The peak to peak was 7.956e-02

When the signal 5k ohms passes through the filter

Transfer function $=\frac{(0.05)}{(s+0.05)}$

Observation: When signal of 5k ohms was passed through the filter, the signal was attenuated at **1.592e-02**. The high frequency signal was blocked out while the low frequency signal passed through.

The peak to peak for 5k ohms was 3.183e-02

Conclusion

The value of peak to peak for both 5k ohms and 2k ohms are **3.183e-02** and **3.977e-02** respectively.