AKUH OJOAJOGU JOSEPH YUSUF

17/ENG06/008

MECHANICAL ENGINEERING

ENG 342 ASSIGNMENT

QUESTION A.

- FILTERS AUTHORIZES RADIO RECEIVERS TO ONLY "SEE" THE DESIRED SIGNAL WHILE REJECTING ALL OTHER SIGNALS (ASSUMING THE OTHER SIGNALS HAVE DIFFERENT FREQUENCY CONTENT).
- FILTERS ARE USED TO ELIMINATE UNDESIRED HIGH FREQUENCIES (I.E., NOISE) THAT ARE PRESENT ON AC INPUT LINES. ADDITIONALLY, FILTERS ARE USED ON A POWER SUPPLY'S OUTPUT TO REDUCE RIPPLE.
- A CROSSOVER NETWORK IS A NETWORK OF FILTERS USED TO CHANNEL LOW-FREQUENCY AUDIO TO WOOFERS, MID-RANGE FREQUENCIES TO MIDRANGE SPEAKERS, AND HIGH-FREQUENCY SOUNDS TO TWEETERS.
- USED IN AUDIO APPLICATIONS FOR EQUALLIZATION PURPOSES.
- USED IN RECEIVERS SUCH AS SUPERHETERODYNE ETC FOR EFFICIENT RECEPTION OF THE BASEBAND SIGNALS.

QUESTION B.

DESIGNING A LOW-PASS FILTER WITH 0.005Q RESISTOR AND 0.01F CAPACITOR

A 100V AMPLITUDE WAS SELECTED WITH A FREQUENCY OF 1HZ FOR THE SINE WAVE SOURCE.

QUESTION C.
DETERMINING THE CUT-OFF FREQUENCY
THE CUT-OFF FREQUENCY IS CALCULATED BY F $=1 / 2^{*}\left(\mathrm{PI} \mathrm{P}^{*} \mathrm{R}^{*} \mathrm{C}\right)$
WHEN $\mathrm{R}=0.005 \Omega$ AND $\mathrm{C}=0.01 \mathrm{~F}$
$\mathrm{F}=0.5^{*} \mathrm{PI}^{*} 0.005^{*} 0.01=3189.099 \mathrm{HZ}$

QUESTION D.

DESIGN OUTPUT

THE TRANSFER FUNCTION EQUATION FOR THE CIRCUIT IS GIVEN AS
($1 / \mathrm{RC}$)/(S $+1 / \mathrm{RC})$
WHEN $\mathrm{R}=0.005 \Omega$ AND $\mathrm{C}=0.01 \mathrm{~F}$
TRANSFER FCN $=\left(1 / 0.005^{*} 0.01\right) /\left(S+\left(0.005^{*} 0.01\right)\right)=(20000) /(S+20000)$

A. IF TWO SIGNALS OF 5 Kת AND 2 Kת ARE PASS THROUGH THE FILTER AT DIFFERENT INTERVALS. DISCUSS YOUR OBSERVATION

WHEN THE SIGNAL OF 5 KO IS PASSED THROUGH THE FILTER, THE FOLLOWING RESULT IS OBTAINED:

THE TRANSFER FUNCTION EQUATION FOR THE CIRCUIT IS GIVEN AS
$(1 / R C) /(S+1 / R C)$
WHEN $\mathrm{R}=5000 \Omega$ AND $\mathrm{C}=0.01 \mathrm{~F}$
TRANSFER FCN $=\left(1 / 5000^{*} 0.01\right) /\left(\mathrm{S}+\left(5000^{*} 0.01\right)\right)=(0.02) /(\mathrm{S}+0.02)$

OBSERYATIONS: THE SIGNAL IS ATTENUATED TO 3.869 OHMS

WHEN R=2000 AND C=0.01F
TRANSFER FCN $=(1 / 2000 * 0.01) /\left(S+\left(2000^{*} 0.01\right)\right)=(0.05) /(S+0.05)$

OBSERVATIONS: THE SIGNAL IS ATTENUATED TO 9.266 OHMS

